Переход от канонических уравнений к общим

Процесс перехода от общего уравнения к каноническому и на оборот, основные правила. Сущность взаимного расположения прямых в пространстве и порядок нахождения расстояния. Процесс определения угла между прямой и плоскостью. Понятие эллипса и окружности.

Подобные документы

  • Современное обозначение непрерывных дробей. Работы Эйлера по теории цепных дробей. Метод нахождения наибольшего общего делителя. Корень квадратного уравнения с целочисленными коэффициентами. Метод приближенного решения дифференциальных уравнений.

    статья, добавлен 12.03.2012

  • Решение уравнений в школьной программе. Потребность в комплексных числах. Извлечение корней, понятие квадратных уравнений. Преобразование кубичных уравнений. Решение уравнений в радикалах и существование корней уравнений. Приближённое решение уравнений.

    презентация, добавлен 06.12.2011

  • Сущность конического сечения как геометрического места точек, удовлетворяющих уравнению второго порядка. Основные свойства эллипса, гиперболы, окружности. Определение первого члена, знаменателя геометрической прогрессии. Расчет биномиального коэффициента.

    контрольная работа, добавлен 20.01.2014

  • Составление определителя из координат векторов и его вычисление. Решение системы уравнений методом Крамера. Определение длины ребра пирамиды по формуле расстояния между двумя точками. Нахождение координат точки, симметричной относительно прямой.

    контрольная работа, добавлен 11.03.2014

  • Изучение свойств фигур на плоскости, основные понятия планиметрии и представления о геометрических телах. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного геометрического расположения и их значения относительно плоскости в аксиоме.

    презентация, добавлен 13.04.2012

  • Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.

    реферат, добавлен 31.03.2014

  • Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.

    лекция, добавлен 18.10.2013

  • Определение внутреннего угла, уравнения высоты, уравнения медианы, точки пересечения высот треугольника. Построение кривых второго порядка. Решение системы алгебраических уравнений по формулам Крамера и методом Гаусса. Использование модели Леонтьева.

    контрольная работа, добавлен 22.12.2019

  • Сферы применения общего уравнения Риккати. Мультипликативный интеграл, вычисленный из матрицы коэффициентов как фундаментальное решение системы дифференциальных уравнений. Анализ условий, согласно которым матрица является функционально коммутативной.

    статья, добавлен 03.03.2018

  • Знакомство с методами вычисления определителей третьего порядка. Рассмотрение особенностей решения системы линейных уравнений методом Гаусса. Характеристика основных способов нахождения косинуса угла между векторами. Этапы вычисления объема тетраэдра.

    контрольная работа, добавлен 04.05.2013

  • Рассмотрение способа нахождения общего вида решения системы рекуррентно связанных дифференциальных уравнений первого порядка с линейной зависимостью в правой части. Особенности использования полученной прямой аналитической зависимости в сложных моделях.

    статья, добавлен 18.12.2017

  • Понятие и геометрический смысл модуля. Изучение основных видов уравнений и способов их решений. Способы решения простейших уравнений с модулями. Применение метода интервалов для решения всех типов уравнений с модулями. Уравнения со "сложным" модулем.

    методичка, добавлен 03.03.2012

  • Характеристика центрального и параллельного проецирования. Основные варианты взаимного расположения точек. Исследование длины отрезка и углов наклона прямой к плоскостям проекции. Особенность строения изображения пространственных форм на поверхности.

    учебное пособие, добавлен 15.09.2017

  • Исчисление общего интеграла дифференциального уравнения первого порядка и методом вариации постоянных (методом Лагранжа). Частное решение однородного линейного дифференциального уравнения второго порядка. Решение системы дифференциальных уравнений.

    контрольная работа, добавлен 13.08.2014

  • Порядок определения цепной дроби и процесс обращения в обыкновенную. Характеристика использования схемы Горнера для деления. Закон составления подходящих дробей. Решение одного уравнения Риккати. Сущность и расчет интерполяционных цепных дробей.

    дипломная работа, добавлен 29.10.2013

  • Описание вида и проведение линейного понижения дифференциального уравнения второго порядка. Построение функции уравнения дифференциала и содержание определителя Вронского. Структура общего решения уравнений второго порядка, доказательство, теорема.

    контрольная работа, добавлен 26.11.2012

  • Кривые второго порядка: эллипс, гипербола, парабола. Вывод их канонических уравнений, исследование формы и параметры: полуоси, фокусное расстояние, эксцентриситет. Оптическое свойство кривых и исследование неполного уравнения кривой второго порядка.

    курс лекций, добавлен 26.12.2010

  • Рассмотрение Теоремы Фейербаха и теоремы Эйлера об окружности девяти точек. Ознакомление с историей ее доказательства и названия. Построение прямой Эйлера и описанной окружности. Изучение свойств окружности Эйлера, нахождение ее центра и радиуса.

    презентация, добавлен 08.09.2014

  • Сущность и структура дифференциальных уравнений, требования к ним и значение в математике. Обыкновенные уравнения первого и высшего порядка, их отличительные характеристики и свойства. Дифференциальные уравнения в частных производных: общее описание.

    контрольная работа, добавлен 12.04.2014

  • Понятие функционального уравнения. Изучение простейших функциональных уравнений. Решение функциональных уравнений методом подстановки и методом Коши. Использование значений функции в некоторых точках. Графическое решение функциональных уравнений.

    курсовая работа, добавлен 04.11.2012

  • Преобразование декартовых прямоугольных координат на плоскости. Решение задачи приведения уравнения кривой второго порядка к каноническому виду, отыскание канонического уравнения кривой и системы координат. Порядок применения тригонометрических формул.

    контрольная работа, добавлен 29.09.2013

  • Особенности теоретических основ численного решения скалярных (нелинейных) уравнений методом хорд. Нахождение отрезков из области определения функции f (x), внутри которых содержится только один корень решаемого уравнения. Отделение корней уравнения.

    курсовая работа, добавлен 29.11.2015

  • Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.

    лекция, добавлен 26.08.2015

  • Система ограничений. Стандартная (симметричная) задача линейного программирования. Способы перехода к каноническому виду. Переход от ограничений к равенствам. Замена отрицательных переменных неотрицательными. Правило прямоугольника (треугольника).

    контрольная работа, добавлен 31.10.2013

  • Методы получения функционального уравнения для доказательства великой теоремы Ферма. Исследование матрицы распределения составных чисел в ряду натуральных числовых значений. Составление системы уравнений для нахождения показателей пифагоровых троек.

    учебное пособие, добавлен 30.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.