Ірраціональність та трансцендентність числа пі

Історія появи числа в геометрії, його ірраціональність та вираження дробом. Трансцендентність числа пі - математичної константи, що визначається у Евклідовій геометрії як відношення довжини кола до його діаметра або як площа круга одиничного радіуса.

Подобные документы

  • Понятие комплексного числа, его геометрическая интерпретация. Математические операции над комплексными числами: вычитание и деление, возведение в степень, извлечение корня, тригонометрическая форма, свойства модуля и аргумента. Уравнения высших степеней.

    курсовая работа, добавлен 26.09.2009

  • Поняття та геометрична сутність площини Лобачевського. Перевірка аксіоми моделі Бельтрамі-Клейна. Властивості кола, навколо якого описаний трикутник. Відношення довжин відрізків, проведених через коло в одній площині, аналіз фактів евклідової геометрії.

    реферат, добавлен 22.12.2015

  • История комплексных У. Гамильтона, названные "кватернионами". Свойства этих чисел, и их примеры: операция сопряжения, тождество для двух квадратов, деление. Определение кватернионов и их сопряжение. Гиперкомплексные числа: коммутативные, ассоциативные.

    курсовая работа, добавлен 22.04.2011

  • История возникновения математической константы, выражающей отношение длины окружности к ее диаметру, ее значение для науки. Понятие геометрического и классического периода вычисления числа пи. Сущность формул Ф. Виета, Д. Валлиса, Д. Мэчина и Л. Эйлера.

    презентация, добавлен 24.02.2015

  • Комплексные числа и их геометрическая интерпретация, свойства модуля и аргумента. Математические действия с ними: сложение и вычитание, умножение и деление, возведение в степень и извлечение корня. Решение квадратного уравнения с комплексным неизвестным.

    курсовая работа, добавлен 26.12.2011

  • Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.

    презентация, добавлен 16.01.2018

  • Пи - буква греческого алфавита, применяемая в математике для обозначения отношения длины окружности к диаметру. Первый шаг в изучении свойств числа Пи, сделанный Архимедом. Вычисление периметра правильного 96-угольника. Формула длины окружности.

    презентация, добавлен 14.02.2016

  • Аксиоматическая теория натуральных чисел, рациональных, действительных, комплексных чисел и кватернионов. Характеристика рационального числа через его представление в виде десятичной дроби. Комплексные двойные и дуальные числа. Усиленная аксиома Кантора.

    учебное пособие, добавлен 16.06.2015

  • Прикладная математика, процесс математического моделирования. Абсолютная и относительная погрешность приближения и ее граница. Проценты. Нахождение процентов от числа, числа по ее процентам, процентного отношения двух чисел. Решение квадратных уравнений.

    шпаргалка, добавлен 06.09.2010

  • Теория чисел как непосредственное развитие арифметики, краткий исторический очерк. Понятие числового поля и алгебраического числа. Доказательство теоремы Лиувилля о приближении алгебраических чисел. Подтверждение существования трансцендентных чисел.

    контрольная работа, добавлен 30.10.2010

  • Определение вероятности того, что среди шести взятых одновременно деталей три окажутся первого вида. Проведение расчета вероятного числа студентов, родившихся 1 мая. Особенности применения полиноминальной схемы. Анализ закона распределения числа.

    задача, добавлен 07.11.2013

  • Постановка и решение задачи в одномерном случае. Определение хроматического числа прямой и плоскости. Критическая конфигурация точек на плоскости. Построение раскрасок плоскости. Доказательство теорем Райского и Лармана-Роджерса. Изучение теории графов.

    книга, добавлен 25.11.2013

  • Характеристика классической задачи разложения целого числа в произведение его простых делителей. Исследование экспоненциального роста размерности пространства состояний с ростом числа квантовых частиц. Преимущества использования квантовых компьютеров.

    статья, добавлен 21.06.2018

  • Узагальнення та систематизація надбаних учнями знань, вмінь оперувати поняттями додатне, від'ємне число, цілі та раціональні числа, сприяння вихованню у них почуття самоконтролю. Різнорівневі завдання для самостійної роботи на аркушиках через копірку.

    разработка урока, добавлен 20.09.2019

  • "Пи" - математическая константа, равная отношению длины окружности к длине её диаметра. Методы определения значения числа. Анализ математических формул древних ученных: Архимеда, Людольфа ван Цейлена. Вычисление знаков после запятой у числа "Пи".

    доклад, добавлен 31.01.2018

  • Числа Эйлера первого порядка: определения, треугольник Эйлера. Рекуррентные формулы, дополнительные тождества. Связь натуральных степеней и последовательных биномиальных коэффициентов. Зеркальное отражение перестановки. Определение чисел Стирлинга.

    реферат, добавлен 01.10.2013

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • Геометрическая интерпретация комплексного числа. Арифметические операции над комплексными числами. Геометрическое изображение суммы, вычитание и деление, геометрическое изображение разности, тригонометрическая форма, свойства модуля и аргумента.

    курсовая работа, добавлен 29.11.2014

  • Комплексные числа и их роль в науке. Их способность представлять вращения и масштабные преобразования в плоскости, описывать волновые процессы и колебания. Применение комплексных чисел в теории относительности, квантовой механике, электродинамике.

    статья, добавлен 13.12.2024

  • Понятие комплексного числа. Алгебраическая форма записи комплексного числа. Рассмотрение тригонометрической и показательной формы. Основные действия над комплексными числами. Разложение многочлена на множители. Разложение правильных рациональных дробей.

    курс лекций, добавлен 27.08.2017

  • Развитие математики в Западной Европе. Изучение теоретико-числовых свойств чисел Фибоначчи, возможности их применения к решению задач. Применение числа Фибоначчи в вопросах, связанных с исследованием путей в различных геометрических конфигурациях.

    реферат, добавлен 26.03.2019

  • История возникновения комплексных чисел, их общая характеристика. Действия над комплексными числами в алгебраической форме. Геометрическая интерпретация комплексного числа, его тригонометрическая, показательная форма. Применение комплексных чисел.

    контрольная работа, добавлен 30.01.2010

  • Послідовність многочленів Апеля. Многочлени та числа Бернуллі. Основна властивість многочленів Бернуллі. Зв’язок з простими числами. Експоненційна генератриса послідовності. Правило винесення за знак біноміального коефіцієнта. Формальний степеневий ряд.

    курсовая работа, добавлен 22.01.2015

  • Числа Фибоначчи - математическая последовательность, отражающаяся во всех творениях мироздания, которые подчинены единым законам природы и имеют большой практический и теоретический интерес. Анализ специфических особенностей правила золотого сечения.

    творческая работа, добавлен 26.04.2019

  • Определение процента (части) от числа. Определение числа по его части, выраженной в процентах. Процентное сравнение чисел (величин). Примеры изменения цены при повышении на 25 % и понижении на 25 %. Задачи на "усыхание" по теме "Смеси, сплавы, растворы".

    презентация, добавлен 06.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.