Приближение функций по формулам Ньютона и построение кривых

Основные свойства операции дифференцирования. Производные и дифференциалы высших порядков. Понятия интерполяции и аппроксимации. Интерполяционные формулы Ньютона при равноотстоящих узлах. Использование квадратурных формул для численного интегрирования.

Подобные документы

  • Операции над множествами. Понятия и определения отношений и функций. Характеристики графов, алгоритм Форда–Беллмана нахождения минимального пути. Минимальные остовные деревья нагруженных графов. Формулы логики булевых функций, преобразования формул.

    методичка, добавлен 28.06.2013

  • Программирование процесса определения погрешности значений функций, приближенного решения систем уравнений, аппроксимации функций, вычисления интегралов, численного интегрирования дифференциальных уравнений, используя среду разработки Borland Delphi.

    контрольная работа, добавлен 12.12.2012

  • Вычисление определенных интегралов по формуле Ньютона-Лейбница. Методы численного интегрирования. Суть метода прямоугольников. Метод средних прямоугольников. Выполнение "прямого хода" и "обратного хода". Задача Дирихле для уравнения Лапласа методом сеток.

    контрольная работа, добавлен 15.06.2013

  • Основные понятия дифференциальных уравнений высших порядков. Характеристика и особенности задачи Коши, метод ее решения. Понятие о граничной (краевой) задаче. Основные уравнения, интегрируемые в квадратурах, и уравнения, допускающие понижение порядка.

    лекция, добавлен 26.08.2015

  • Изучение основных методов интегрирования простейших иррациональных функций. Определенный интеграл и его приложения. Формула Ньютона-Лейбница. Замена переменной в определенном интеграле. Вычисление площади плоской фигуры, дуги, объемов тел вращения.

    методичка, добавлен 16.09.2017

  • Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.

    учебное пособие, добавлен 03.07.2013

  • Интерполяция функции - одна из важнейших задач численного анализа. Постановка задачи интерполяции и общие идеи её решения. Применение этого метода в вычислении интегралов. Описание интерполирования методом Лагранжа. Суть интерполирования методом Ньютона.

    контрольная работа, добавлен 10.01.2012

  • Побудова апарату некласичних мінорант Ньютона функцій однієї дійсної змінної, заданих таблично. Використання цього апарату для оцінки точності наближення функцій некласичними мінорантами Ньютона. Основні властивості міноранти Ньютона та її діаграми.

    статья, добавлен 30.01.2017

  • Знаходження кореня рівняння заданої неперервної функції на певному відрізку. Умови ітераційних обчислень у методі Ньютона. Критерії умов завершення розрахунку для алгоритму. Недоліки методу Ньютона. Обчислення квадратного кореня за його вказаного методу.

    практическая работа, добавлен 09.08.2022

  • Математический поиск пределов функций. Расчет асимптот, промежутков возрастания и убывания, максимумов и минимумов, направлений выпуклости и перегибов графика. Использование формул правил дифференцирования и таблицы производных элементарных функций.

    контрольная работа, добавлен 22.05.2014

  • Задача численного интегрирования функций, квадратурные формулы вычисления однократного интеграла. Выявление погрешностей используемых значений и функций, разработка вычислительного алгоритма, расчет конкретного интеграла по формуле правых прямоугольников.

    контрольная работа, добавлен 14.05.2012

  • Доказательство Великой теоремы Ферма на основе соответствия эллиптических кривых и модулярных форм. Применение формулы бинома И. Ньютона. Преобразование уравнения в эквивалентное кубическое, где кривая, соответствующая уравнению, является эллиптической.

    курсовая работа, добавлен 30.03.2017

  • Определение несобственного интеграла по неограниченному промежутку. Формула Ньютона-Лейбница для интегралов первого рода. Признаки сравнения Абеляра и Дирихле для функций. Особенность на левом конце промежутка интегрирования. Простейшие теоремы.

    курсовая работа, добавлен 09.10.2014

  • Задачи визуализации математических функций, имеющих в некоторых точках разрыв первой производной. Принципы выбора интерполяционных методов построения кривых с изломами в заданных точках. Информационно-алгоритмический способ сплайн-интерполяции кривых.

    статья, добавлен 15.12.2021

  • Интерполирование как один из способов приближения функций. Интерполяционная формула Лагранжа. Формула Ньютона. Пример нахождения приближенного значения по интерполяционной формуле Лагранжа, Ньютона для значения заданного аргумента. Код программы Паскаль.

    контрольная работа, добавлен 21.10.2017

  • Понятие частной производной. Вид полного дифференциала. Теоретические основы преобразования выражений с помощью дифференциалов. Таблица производных основных элементарных функций. Значение аргумента, правила дифференцирования функций, решение задач.

    контрольная работа, добавлен 16.03.2017

  • Применение правила Лопиталя к неопределенностям. Составление уравнения касательных к гиперболе. Исследование функции, нахождение экстремумов и построение ее графиков. Вычисление интеграла заменой переменных и с использованием формулы Ньютона-Лейбница.

    контрольная работа, добавлен 17.02.2011

  • Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.

    курс лекций, добавлен 23.10.2013

  • Определение порядка аппроксимации конечно-разностных уравнений. Способы повышения порядка аппроксимации, анализ устойчивости численного решения. Конкретные условия существования устойчивого численного решения. Методы уменьшения невязки и фиктивных узлов.

    дипломная работа, добавлен 04.07.2018

  • Основные методы, использующие информацию о производных при поиске точки минимума: метод средней точки, хорд, касательных Ньютона, кубической аппроксимации. Их краткое описание, примеры выведения уравнений, коэффициентов функций и координат точек.

    презентация, добавлен 09.07.2015

  • Рассмотрение задач, приводящих к понятию производной. Механический и геометрический смысл производной. Уравнение касательной и нормали к плоской кривой. Производные тригонометрической, логарифмической, степенной, сложной функций, высших порядков.

    шпаргалка, добавлен 28.05.2015

  • Изучение понятия элементарных функций в математике, их виды. Характеристика правил определения элементарных функций по Лиувиллю. Дифференцирование и нахождение производных по таблице. Дифференцируемая в точке функция, матрица Якоби и теорема Лебега.

    реферат, добавлен 26.02.2015

  • Роль интерполяции функций в вычислительной математике. Построение таблично заданных функций, которые совпадают со значениями исходной функции в некотором числе точек. Алгоритм построения интерполяции с помощью интерполяционного полинома Лагранжа.

    контрольная работа, добавлен 03.06.2015

  • Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.

    реферат, добавлен 07.11.2015

  • Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.

    курсовая работа, добавлен 17.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.