Аналитическая геометрия

Декартова, полярная, цилиндрическая и сферическая системы координат на плоскости. Линии и прямые на плоскости. Угол между прямыми. Общее уравнение прямой. Выражение векторного произведения через координаты сомножителей. Угол между прямой и плоскостью.

Подобные документы

  • Скалярное произведение векторов. Смешанное и векторное произведения векторов. Прямая на плоскости. Кривые второго порядка на плоскости. Плоскость и прямая в пространстве. Понятие о поверхностях второго порядка в трехмерном пространстве. Сфера и эллипсоид.

    учебное пособие, добавлен 23.03.2013

  • Оценка геометрических образов (прямые линии, кривые линии, плоскости, поверхности) с помощью многомерности параметров точечно-эпюрных номограмм. Закономерности, применяемые в начертательной геометрии. Аргументальные оси четвёртой октанты. Проекции точек.

    статья, добавлен 30.04.2018

  • Формулирование условий перпендикулярности двух прямых общего положения. Определение на чертеже расстояния от точки до прямой частного положения. Построение точки пересечения плоскости с прямой линией общего положения и линии пересечения двух плоскостей.

    лекция, добавлен 24.07.2014

  • Вычисление элементов матрицы суммы. Определитель третьего порядка и правило треугольников. Решение системы линейных уравнений методом Гаусса. Косинус угла между векторами. Уравнение плоскости, проходящей через точку. Объем тетраэдра с заданными вершинами.

    контрольная работа, добавлен 30.09.2013

  • Исследование кривой второго порядка, принципы и правила ее построения по каноническому уравнению. Преобразование координат на плоскости. Преобразование координат на плоскости. Приведение к каноническому виду общего уравнения кривой 2-ого порядка.

    контрольная работа, добавлен 06.06.2014

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

  • Теоретическое исследование векторов и линейные операции с ними. Базы на плоскости и в пространстве. Прямоугольная декартова система координат. Определение скалярного произведения. Необходимое и достаточное условие коллинеарности двух нулевых векторов.

    книга, добавлен 23.11.2010

  • Точки, прямые, отрезки. Луч и угол, градусная мера угла, разновидности углов. Смежные и вертикальные углы. Медианы, биссектрисы и высоты треугольника. Признаки равенства треугольников. Решение задач на построение. Признаки и аксиома параллельности прямых.

    презентация, добавлен 13.04.2012

  • Определение положения точки в пространстве. Правая декартова, полярная и косоугольная системы координат. Способы измерения дуг. Определение координат точки в пространстве, окружности и ее радиуса. Построение сферической и цилиндрической системы координат.

    презентация, добавлен 12.10.2012

  • Геометрия Лобачевского (гиперболическая геометрия) как одна из неевклидовых геометрий. Евклидова аксиома о параллелях. Разработка модели планиметрии. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому.

    реферат, добавлен 28.05.2014

  • Понятие, классификация и описание существующих систем координат. История их открытия. Формулы и правила построения кривых в математике и информатике. Прямые и изогнутые линии в природе, технике, живописи. Построение круга на плоскости и в пространстве.

    презентация, добавлен 15.04.2014

  • Получение изображения объектов пространства на плоскости методом проецирования. Центральное проецирование как общий случай проецирования геометрических объектов на плоскость. Проецирование на три плоскости проекций. Проекции точки, прямой и плоскости.

    лекция, добавлен 02.04.2019

  • Переход от общих уравнений прямой к каноническим. Взаимное расположение прямых в пространстве, вычисление угла между ними. Порядок решения системы уравнений по формулам Крамера. Определение направляющего вектора. Проверка условия коллинеарности.

    контрольная работа, добавлен 30.10.2019

  • Полярная система координат на плоскости. Особенности построения кривых, заданных полярными уравнениями. Зависимость между полярными и декартовыми координатами. Построение первого витка спирали Архимеда. Применение логарифмической спирали в технике.

    конспект урока, добавлен 17.05.2012

  • Первые три аксиомы и взаимное расположение точек и прямых, расположение одной точки между двумя прямыми. Формулировка аксиомы, наложение, отрезок и прямые, луч и неразвернутый угол. Система аксиом планиметрии, завершающая аксиома параллельных прямых.

    презентация, добавлен 13.04.2012

  • История возникновения неевклидовой геометрии. Основные понятия Лобачевского о пространственных структурных отношениях и их обобщение, области применения. Нахождение моделей плоскости и протяженности. Аксиома о параллельных прямых и уравнение сферы.

    реферат, добавлен 04.09.2014

  • Анализ особенностей развития неэвклидовой геометрии. Н.И. Лобачевский и его геометрия. Пятый постулат Евклида. Параллельные прямые по Лобачевскому. Теорема о существовании параллельных прямых. Треугольники и четырехугольники на плоскости Лобачевского.

    курсовая работа, добавлен 26.09.2017

  • Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.

    курсовая работа, добавлен 30.07.2017

  • Геометрическое определение модуля, обозначение расстояния между точками плоскости. Уравнения, содержащие два и более выражений со знаком модуля, наибольшее целое решение неравенства. Построение графиков функций, разбивание числовой прямой на промежутки.

    реферат, добавлен 29.11.2010

  • Изучение прямых изоклин системы дифференциальных уравнений. Главные способы разбиения множества изоклин, теоремы и доказательства. Нахождение параллельных между собой прямых изоклин системы. Квадратичная дифференциальная система, её состояния равновесия.

    статья, добавлен 27.09.2013

  • Исторические замечания о геометрических преобразованиях на плоскости и в пространстве. Анализ примерной программы по геометрии. Параллельный перенос и поворот, осевая и центральная симметрии. Движения и равенство фигур. Симметрия относительно плоскости.

    презентация, добавлен 28.03.2018

  • Изображение фигуры на плоскости как графический способ представления информации. Многообразие геометрических объектов пространства, отношения между ними и их графическое отображение на плоскости. Основы визуализации информации геометрических объектов.

    курс лекций, добавлен 21.04.2015

  • Линейная зависимость векторов. Уравнение прямой, проходящей через две точки. Общее уравнение кривых второго порядка. Каноническое уравнение гиперболы и эллипса. Квадратичные формы переменных. Тригонометрическая форма комплексного числа, Bзвлечение корня.

    контрольная работа, добавлен 13.09.2009

  • Особенности построения проективной плоскости на базе трехмерного векторного пространства, аналитически и аксиоматически. Характеристика проективной плоскости, ее основные свойства. Анализ теорем Дезарга, Паппа, их применение на евклидовой плоскости.

    курсовая работа, добавлен 21.05.2012

  • Процесс перехода от общего уравнения к каноническому и на оборот, основные правила. Сущность взаимного расположения прямых в пространстве и порядок нахождения расстояния. Процесс определения угла между прямой и плоскостью. Понятие эллипса и окружности.

    лекция, добавлен 23.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.