Метод рядів Фур'є для мероморфних у півсмузі функцій

Встановлення рівності Карлемана та теореми Йенсена-Літтлвуда для прямокутника. Характеристика Неванлінни для мероморфних у півсмузі функцій. Отримання критерію скінченності голоморфної функції методом рядів Фур'є. Доведення еквівалента гіпотези Рімана.

Подобные документы

  • Характеристика головних ознак збіжності гіллястих ланцюгових дробів. Провідний аналіз загального відношення гіпергеометричних функцій. Основна оцінка похибок апроксимацій їх підхідними. Особливість теореми Ньорлунда про збіжність та відповідність.

    автореферат, добавлен 27.07.2014

  • Особливість дослідження асимптотичної поведінки розв’язків диференційних рівнянь дробового порядку. Доведення повноти системи власних та приєднаних функцій крайової задачі із лінійними та нелінійними умовами. Характеристика теореми про базисність Ріса.

    автореферат, добавлен 28.12.2015

  • Основні поняття теорії множин. Відношення та їх властивості. Відображення та функції. Булеві функції та алгебра логіки. Двоїстість булевих функцій. Функціональна повнота наборів булевих функцій. Алгебра Жегалкіна, методи мінімізації булевих функцій.

    реферат, добавлен 22.08.2011

  • Застосування незростаючих переставлень для одержання оцінок норм функцій у деяких функціональних просторах через їх коефіцієнти Фур’є за ортонормованими системами. Лакунарні підсистеми тригонометричної системи. Використання інтерполяційних методів.

    автореферат, добавлен 23.11.2013

  • Функції, їх властивості та області визначення. Поняття функціональної залежності. Три способи завдання функції: аналітичний, графічний і табличний. Загальні властивості функцій. Поділ алгебраїчних функцій на раціональні (цілі й дробові) та ірраціональні.

    учебное пособие, добавлен 19.11.2009

  • Методика отримання оцінки норми похідної монотонної раціональної функції. Характеристика специфічних особливостей та розрахунок нормуючого множника узагальненого ядра Джексона. Метод побудови квадратурних формул на сфері з "малою" кiлькiстю точок.

    автореферат, добавлен 20.07.2015

  • Дослідження особливостей формули Тейлора із залишковим членом у формі Лагранжа. Аналіз тейлорової формули для многочлена. Розгляд розвитку основних елементарних функцій в ряд Маклорена. Вивчення процесу застосування почленного диференціювання рядів.

    курсовая работа, добавлен 14.12.2015

  • Поняття про комплексні числа, їх зображення на площині. Арифметичні дії над комплексними числами, що виконуються за звичайними правилами дій над двочленами. Основні елементарні функції комплексної змінної та її диференціювання. Умови Коші-Рімана.

    лекция, добавлен 30.04.2014

  • Вивчення властивостей Р-півадитивних функцій та їх застосування до теорії зростання субгармонічних функцій. Розгляд особливостей субгармонічних функцій, які локально задовольняють умову Левіна, та спеціальних інтегралів від субгармонічних функцій.

    автореферат, добавлен 23.02.2014

  • Методи наближення функцій. Метод найменших квадратів як ефективний спосіб розв'язання задачі апроксимації функцій, його суть та основні формули. Лініалізація, розв’язання та побудова графіків функцій. Області застосування методу найменших квадратів.

    курсовая работа, добавлен 17.12.2016

  • Точна швидкість чезарівського підсумовування м.с. додатного, від'ємного та змішаного порядків кратних рядів Фур’є. Нові асимптотична та абсолютна оцінки найменших сталих в нерівностях Уітні для простору L(0,1), що покращують відомі оцінки такого типу.

    автореферат, добавлен 12.07.2014

  • Тригонометричні відношення сторін в трикутнику. Вивчення геометричної теореми Піфагора. Означення і графіки тригонометричних функцій. Формули додавання кутів фігур. Таблиця значень функцій косинусів і синусів. Перетворення добутків нерівностей на суми.

    лекция, добавлен 24.01.2014

  • Встановлення властивостей запропонованих схем методу скінчених елементів з вибором координатних функцій для обраних крайових задач (задачі Діріхле для рівняння Пуассона, бігармонічної задачі з крайовими умовами). Характеристика ітераційних методів.

    автореферат, добавлен 28.12.2015

  • Поняття оберненої тригонометричної функції. Поняття арксинус, арккосинус, арктангенс та арккотенгенс. Графіки і властивості функцій y = arcsin x, y = arccos x, y = arctg x та y = arcctg x. Приклади обчислення значень обернених тригонометричних функцій.

    лекция, добавлен 24.01.2014

  • Принципи підсумовування розбіжних степеневих рядів за допомогою класичного методу розв’язання комплексу лінійних алгебраїчних рівнянь. Обґрунтування доцільності використання оператора усереднення з ядерною функцією Гаусса за межею круга збіжності.

    статья, добавлен 22.03.2016

  • Характеристика теорії експоненціально-вагових просторів Гарді у півплощині. Одержання аналогу теореми Пелі-Вінера про продовження функції з уявної осі на півплощину. Дослідження повноти систем експонент з вагою та відповідного рівняння типу згортки.

    автореферат, добавлен 27.04.2014

  • Дослідження зв'язку між розташуванням спектра майже періодичних функцій багатьох змінних і можливістю їх аналітичного продовження в трубчасту область із конусом в основі. Характеристика аналогів теореми Бора про голоморфну обмежену функцію в смузі.

    автореферат, добавлен 28.07.2014

  • Математичні властивості простої і зваженої середньої арифметичної величин, їх способи обчислення. Основні види і характеристики динамічних рядів. Приклади рядів динаміки: поквартальні обсяги використання води у місті, запаси води на кінець кварталу.

    контрольная работа, добавлен 03.12.2010

  • Розгляд інноваційного підходу до оцінки параметрів нелінійних часових рядів, побудованих за спостереженнями на траєкторіях стохастичних систем у випадковому середовищі. Вивчення асимптотичних властивостей розв'язків рівнянь збіжності загального вигляду.

    автореферат, добавлен 25.02.2014

  • Поняття про ряди, їх різновиди та відмінні особливості. Основні поняття та означення числових рядів. Знакододатні ряди та достатні ознаки збіжності, абсолютні та умовні. Теорема Абеля та її практичне використання. Головні властивості степеневих рядів.

    лекция, добавлен 08.08.2014

  • Зміст і призначення теорем про збіжність у теорії міри та інтегралу: Єгорова і Лебега про мажоровану збіжність. Концепція про слабку збіжність у банахових просторах. Теорема Рімана про збіжність рядів та її застосування, математичне обґрунтування.

    автореферат, добавлен 28.09.2015

  • Дослідження класів функцій, що визначаються в термінах відносних локальних характеристик. Знаходження точних оцінок рівновимірних переставлень. Швидкість спадання функції розподілу для функції з обмеженим середнім коливанням, її екстремальні властивості.

    автореферат, добавлен 27.08.2014

  • Специфіка оберненої, протилежної і оберненої до протилежної теорем, їх виростання в розрахунках, найпростіші схеми правильних міркувань. Характеристика та значення дедуктивного доведення та повної індукції, опис та сутність методу від супротивного.

    реферат, добавлен 17.04.2015

  • Вирішення узагальненої інтерполяційної задачі для стільтьєсівських матриць-функцій. Доведення збігу множини канонічних і множини N-екстремальних рішень 1 та 2-го роду. Узагальнення класичного критерію Стільтьєса невизначеності проблеми моментів.

    автореферат, добавлен 29.10.2015

  • Введення і вивчення класу числових функцій та дослідження застосувань цих функцій в задачах теорії зображень графів, теорії асоціативних алгебр та теорії графів. Зв'язок функцій t з кореневими системами графів. Техніка обчислення базисів Грьобнера.

    автореферат, добавлен 28.08.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.