Формальные аксиоматические теории (исчисления)

Принципы построения формальных теорий. Проблемы, связанные с системой аксиом. Доказательство независимости системы аксиом. Исчисление высказываний, символы и формулы. Теорема дедукции и правило силлогизма (транзитивный вывод). Примеры решения задач.

Подобные документы

  • На базе школьных знаний показана невозможность разложения X^n и Z^n на целочисленные множители в уравнении X^n+Y^n=Z^n при n>2. Это значит, что теорема Ферма не имеет целочисленных решений. Разложение чисел данного уравнения на отдельные множители.

    статья, добавлен 11.07.2018

  • Система мышления, создающая взаимосвязи между заданными условиями и позволяющая делать умозаключения, основываясь на предпосылках и предположениях. Принципы построения математических теорий. Использование алгебры высказываний в современной информатике.

    реферат, добавлен 12.04.2015

  • Подходы к определению алгоритма и их эквивалентность. Основные понятия булевых функций, декартово произведение и степень произвольного множества. Теорема о совершенной ДНФ. Виды логических и формальных исчислений. Характеристика предикат и квантор.

    контрольная работа, добавлен 22.02.2010

  • Определение инверсии как преобразования плоскости, её свойства. Построение инверсных точек. Рассмотрение всевозможных случаев построения образов прямых и окружностей при помощи инверсии. Применение данного метода при решении задач на доказательство.

    курсовая работа, добавлен 03.11.2018

  • Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.

    учебное пособие, добавлен 13.01.2014

  • Докозательство ведется применительно к плоскостной координатной системе xOy, т.е. при двух координатах Ox и Oy. Надобность в третьей и последующих координатах отпадает. Элементы xn и yn являются составными частями соответствующих числовых рядов.

    статья, добавлен 17.07.2008

  • Классификация методов решения обыкновенных дифференциальных уравнений. Общие понятия теории многошаговых методов. Явные и неявные формулы Милна. Практические способы оценки погрешности приближенного решения. Автоматический выбор шага интегрирования.

    контрольная работа, добавлен 02.12.2012

  • Доказательство теоремы о том, что число регулярных простых чисел бесконечно. Сравнение Куммера, теорема Штаудта. Принцип бесконечного понижения (спуск). Доказательство теоремы о произведении третьего простого натурального нечетного числа на дробное.

    статья, добавлен 03.03.2018

  • Основные понятия и обозначения, связанные с множествами и операциями над ними. Формула мощности объединения нескольких множеств. Теорема Кантора-Бернштейна и ее доказательства равномощности. Бинарное отношение эквивалентности и порядка. Теорема Цермело.

    курс лекций, добавлен 28.12.2013

  • Симметрические многочлены - системы уравнений, в которые x и y входят одинаковым образом. Важнейшие примеры симметрических многочленов. Представление симметрического многочлена от x и y в виде многочлена от а = х + у и а = ху: доказательство теоремы.

    курсовая работа, добавлен 12.02.2012

  • Теорема С.В. Ковалевской о существовании и единственности решения уравнения в частных производных. Доказательство положения об общем определении квазилинейного равенства. Способ построения задачи Коши с помощью геометрического смысла характеристик.

    курсовая работа, добавлен 26.02.2014

  • Изучение общего курса математики студентами вузов. Сочетание необходимого теоретического материала с широким использованием методов решения основных типов задач по всем разделам курса. Изложение точных формулировок понятий, теорем и доказательств.

    учебное пособие, добавлен 16.04.2014

  • История возникновения математической логики. Основное содержание, формулы, элементы, символы. Таблицы истинности, логические функции, основные логические операции. Законы логики и упрощение логических выражений. Решения задач по математической логике.

    реферат, добавлен 06.06.2012

  • Краткая история и значение термина "комбинаторика". Разнообразие комбинаторных формул. Правило суммы и произведения, пересекающиеся множества. Круги Эйлера. Размещения и сочетания без повторений. Перестановки с повторениями. Примеры решения задач.

    реферат, добавлен 22.01.2013

  • Математический анализ как совокупность разделов математики, посвящённых исследованию функций и их обобщении методами дифференциального и интегрального исчисления. Использование математических методов в сфере управления, решение экономических задач.

    эссе, добавлен 24.08.2013

  • Время жизни Пифагора Самосского, получение им образования. Доказательства теоремы Пифагора: способом достроения квадрата, методом построения и разложения. Доказательство, основанное на использовании понятия равновеликости фигур. Аддитивные доказательства.

    реферат, добавлен 03.04.2017

  • Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.

    курсовая работа, добавлен 17.12.2017

  • Определение системы линейных однородных уравнений и ее нетривиальные решения. Доказательство по теореме Крамера. Пример линейной комбинации. Образование базиса подпространства. Понятие фундаментальной системы решений. Линейные неоднородные уравнения.

    лекция, добавлен 26.01.2014

  • Исследование функций при помощи производных и построение графиков. Необходимые и достаточные условия возрастания и убывания функции. Теорема и ее доказательство. Применение теоремы для убывающих функций. Подробное объяснение и решение задач.

    лекция, добавлен 05.03.2009

  • Доказательство теоремы Виета, в том числе ее применение для приведенного и неприведенного квадратного уравнения. Практические задачи и ситуации, в которых может использоваться теорема, а также краткая биография французского математика Франсуа Виета.

    презентация, добавлен 18.04.2011

  • N-перестановки - размещения без повторений из n элементов, в которые входят все элементы. Сущность и особенности сочетаний с повторениями и без повторений. Частный случай формулы включений и исключений. Примеры решения задач по перестановке и сочетаниям.

    реферат, добавлен 04.10.2011

  • Множини та операції з ними. Основний принцип комбінаторики, правило множини. Декартів добуток двох множин. Біном Ньютона та біноміальні тотожності. Мала теорема Ферма. Шпернерові сімейства та теорема Шпернера. Перестановки та комбінації з повторенням.

    учебное пособие, добавлен 11.04.2013

  • Изучение теории возвратных последовательностей и возможное применение её части на факультативах в школьном курсе математики. Примеры возвратных задач. Вывод формул вычисления любого члена возвратной последовательности. Базис возвратного уравнения.

    контрольная работа, добавлен 23.09.2009

  • Сходимость в метрическом пространстве. Свойства линейных операторов. Основная теорема теории вычетов, ее доказательство. Дифференциальное уравнение в полных дифференциалах. Основная теория Коши для аналитической функции. Линейные ограниченные операторы.

    шпаргалка, добавлен 13.06.2012

  • Определение предела последовательности, теорема о единственности предела. Классификация пределов, теорема о предельном переходе в неравенствах и теорема о двух милиционерах. Примеры интегрирования по частям, решение простых и неопределенных интегралов.

    контрольная работа, добавлен 19.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.