Линейный непрерывный функционал

Комплексное векторное пространство. Теорема Пэли-Винера Шварца. Семейство голоморфных функций в области комплексной плоскости. Функции вещественной переменной. Линейное отображение, обладающее свойством непрерывности. Линейный непрерывный функционал.

Подобные документы

  • Характеристика функций и графиков функций: определения и понятия. Функции и их свойства: линейная, обратной пропорциональности, квадратичная, степенные. Движение функций по осям координат. Влияние модуля на функции: модуль и обратная пропорциональность.

    реферат, добавлен 15.08.2014

  • Системы линейных уравнений и матрицы. Действия с комплексными числами. Смежные классы и теорема Лангранжа. Тригонометрическая форма комплексного числа. Понятия дискриминант и результант. Многочлены и ряды от переменной. Описание кольца степенных рядов.

    курс лекций, добавлен 28.12.2013

  • Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.

    курсовая работа, добавлен 04.03.2017

  • Особенности оценки роли множителя Лагранжа при нахождении условного экстремума функционала для движущейся механической системы. Функционал как принцип действия для механической системы с двумя степенями свобод, способы процедуры его восстановления.

    статья, добавлен 27.02.2013

  • Отображение плоскости на себя как преобразование, где точкам исходной плоскости сопоставляются точки этой же плоскости. Типы движений на плоскости: параллельный перенос, осевая симметрия, поворот вокруг точки, центральная симметрия. Свойства гомотетии.

    контрольная работа, добавлен 20.03.2011

  • Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.

    учебное пособие, добавлен 23.11.2012

  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат, добавлен 09.02.2017

  • Построение полигона (гистограммы), кумулята и эмпирической функции распределения. Построение на плоскости области допустимых решений системы линейных неравенств. Задача линейного программирования симплекс-методом и способы решения двойственных задач.

    контрольная работа, добавлен 04.01.2015

  • Понятие независимой переменной и зависимой переменной функции. Методика построения графика функции - множества всех точек координатной плоскости, абсциссы которых равны значениям независимой переменной, а ординаты - соответствующим значениям функции.

    презентация, добавлен 07.11.2012

  • Дифференциальное и интегральное исчисления. Основные типы матриц. Миноры и алгебраические дополнения. Союзная и обратная матрицы. Правило Крамера для решения линейных уравнений. Билинейная и квадратичная форма. Собственные числа и линейное пространство.

    реферат, добавлен 02.06.2021

  • Главная задача теории аппроксимации. Основная теорема данной концепции в линейном нормированном пространстве и в пространстве Гильберта. Круг идей Чебышева, переход к периодическим функциям. Методы аппроксимации, приближение функции многочленами.

    контрольная работа, добавлен 02.11.2010

  • Связь между понятиями аналитических и гармонических функций. Отличия отличной от постоянной гармонической функции, что не может достигать экстремума во внутренней точке области определения. Граничная теорема единственности теории аналитических функций.

    курсовая работа, добавлен 14.06.2023

  • Понятие конформных отображений, их осуществление через элементарные функции. Основные принципы теории конформных отображений об отображении одной заданной области на другую. Принципы непрерывности и симметрии. Конформность дифференцируемого отображения.

    курсовая работа, добавлен 11.10.2011

  • Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.

    лекция, добавлен 21.09.2017

  • Основные правила обозначения пространства непрерывных функций. Характеристика классического решения краевой задачи. Описание основных теорем, их положения и обоснование. Процесс расширения понятия решения краевой задачи по двум направлениям, их отличия.

    презентация, добавлен 30.10.2013

  • Геометрическая интерпретация задачи линейного программирования. Методы исследования и отыскания наибольших и наименьших значений функции, на неизвестные которой наложены линейные ограничения. Условный экстремум функции. Векторная и матричная форма записи.

    реферат, добавлен 23.12.2013

  • Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.

    контрольная работа, добавлен 11.03.2011

  • Операции над множествами. Свойства функции одной переменной. Основные теоремы о пределах. Производная функции одной переменной. Дифференциал функции. Применение производной. Действия над комплексными числами. Интегрирование тригонометрических выражений.

    курс лекций, добавлен 28.06.2014

  • Критерии определения независимости и ортогональности собственных векторов. Свойства расстояния. Простейшие операции над множествами. Последовательности и функции в пространстве Rn. Теорема Гейне. Непрерывность на множестве. Понятие частных производных.

    курсовая работа, добавлен 17.01.2011

  • Изучение матриц и линейных уравнений как основных элементов линейной алгебры. Описание элементов векторной алгебры. Исследование основ аналитической геометрии на плоскости и в пространстве. Составляющие производных, функций и математического анализа.

    курс лекций, добавлен 23.09.2012

  • Способы деления многочленов. Основная теорема алгебры комплексных чисел. Особенности попарного выделения сопряженных корней. Правила представления неправильных дробей. Использование метода неопределенных коэффициентов. Разложение функций на множители.

    лекция, добавлен 09.07.2015

  • Понятие конформного отображения. Свойства конформного отображения, теорема Римана, теорема Лиувилля. Применение конформного отображения. Характеристика и примеры конформного отображение внешности дуги на внешность круга. Метод и форма профилей Жуковского.

    курсовая работа, добавлен 03.10.2016

  • Характеристика дробно-линейного программирования как вида нелинейного программирования. Этапы решения подобных задач симплексным методом и посредством нахождения области допустимых решений. Возможности применения на практике математической модели задачи.

    контрольная работа, добавлен 11.09.2011

  • Характеристика аналитических функций комплексной переменной с малыми параметрами, порождаемыми некоторыми операторами. Исследование асимптотического поведения функции. Особенности решения задачи с использованием линии уровня гармонических функции.

    статья, добавлен 14.08.2020

  • Изучение эффективности непрерывного и прямого алгоритма муравьиной колонии. Определение особенностей распределения ошибки в зависимости от размера архива, коэффициента испарения феромона. Решение задачи параметрической идентификации нечетких моделей.

    статья, добавлен 19.01.2018

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.