Модель множественной регрессии
Использование корреляционного анализа для множественной регрессионной модели и обоснование её значимости и значимости каждого регрессора, используя электронную таблицу Excel. Подбор наиболее подходящей линейной модели и нелинейной множественной модели.
Подобные документы
Упрощение линейной модели, взяв в качестве критериев оценки адекватности, точности и значимости параметров. Построение модели на основе степенной функции. Наиболее влияющие факторы на основной показатель. Работа сервиса Microsoft Excel "Анализ данных".
практическая работа, добавлен 13.04.2015Расчет параметров нормализованной линейной модели. Порядок подсчета дисперсии воспроизводимости. Оценка значимости влияния факторов на отклик при помощи латинского квадрата. Характеристика, применение критериев Фишера. Проверка выборок на однородность.
курсовая работа, добавлен 08.03.2014Выбор факторов, влияющих на производительность труда. Рассмотрение линейной зависимости. Использование критериев Фишера и Стьюдента. Расчет коэффициентов регрессии и стандартных отклонений. Проверка адекватности модели. Проверка теоретического уравнения.
контрольная работа, добавлен 13.05.2009Разработка эконометрической модели в пакете Econometric Views. Расчет модели множественной регессии для всей совокупности независимых факторов методом наименьших квадратов. Определение коэффициентов эластичности и детерминации. Анализ характера остатков.
курсовая работа, добавлен 04.12.2013Рассмотрение процесса ранжирования компаний по степени эффективности, используя результаты регрессионного анализа. Составление уравнения нелинейной регрессии. Характеристика построенной модели с помощью коэффициента детерминации и критерия Фишера.
контрольная работа, добавлен 18.06.2014Построение и анализ линейной множественной регрессии. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Интерпретация коэффициентов регрессии. Проверка на наличие автокорреляции и гетероскедастичность.
контрольная работа, добавлен 02.08.2013Построение совместных доверительных границ для среднего повторных наблюдений множественной нормальной линейной регрессионной модели с помощью метода коррекции Бонферрони уровня доверия и его аналогов. Рекомендуется к применению численный метод Бонферрони.
статья, добавлен 14.12.2021Обзор статистической зависимости с помощью методов корреляционного и регрессионного анализа. Изучение линейной и нелинейной регрессии. Прогнозирование временных рядов при построении эконометрической модели данных. Функции сложного процента денег.
курсовая работа, добавлен 07.09.2013Оценка корреляционной матрицы факторных признаков. Построение уравнений парной и множественной регрессии. Определение доверительного интервала прогнозов. Оценка значимости регрессивного уравнения и числа детерминации, взаимосвязь по временным рядам.
методичка, добавлен 28.12.2013Оценка существенности параметров уравнения множественной регрессии и корреляции. Классификация систем эконометрических уравнений. Создание экономической модели значений котировок доллара по отношению к рублю с целью повышения прибыльности предприятий.
контрольная работа, добавлен 23.11.2016Построение средствами регрессионного анализа математической модели зависимости стоимости квартиры в городе Смоленске от характеристик квартиры и ее расположения в городе. Построение уравнения множественной регрессии. Матрица парных коэффициентов.
статья, добавлен 21.02.2018Построение однофакторной и двухфакторной моделей регрессии. Анализ влияния фактора на зависимую переменную по моделям с помощью коэффициентов детерминации, множественной корреляции, эластичности и установление степени линейной связи между переменными.
практическая работа, добавлен 16.05.2013Понятие, предмет и задачи эконометрики. Спецификация моделей парной и множественной регрессии. Проверка значимости результатов с помощью критерия Фишера. Значение мультиколлениарности при отборе факторов. Моделирование сезонных и циклических колебаний.
шпаргалка, добавлен 02.03.2014Построение поля корреляции, расчет параметров уравнения линейной регрессии, оценка тесноты связи. Сравнительная оценка силы связи фактора с результатом. Анализ линейных коэффициентов парной и частной корреляции. Уравнение множественной регрессии.
контрольная работа, добавлен 30.03.2010Проверка статистической гипотезы значимости коэффициента функции регрессии. Построение квадратичной модели функции регрессии. Интерполирование функций, процедура линеаризации в решении нелинейной задачи регрессии. Построение полулогарифмической функции.
курсовая работа, добавлен 19.03.2015- 66. Эконометрика
Основные понятия эконометрики, теории вероятностей и математической статистики. Модель множественной линейной регрессии. Временные ряды. гетероскедастичность и автокоррелированность. Системы одновременных уравнений, особенности их структуры и формы.
курс лекций, добавлен 10.12.2014 Построение поля корреляции. Анализ силы связи эластичности и бета-коэффициента. Оценка статистической надежности экономической модели и результатов значимости параметров регрессии и корреляции. Выбор лучшей модели и расчет прогнозного результата.
контрольная работа, добавлен 30.04.2014Описание и примеры системы эконометрических уравнений. Характеристика основных методов оценки параметров эконометрических моделей множественной регрессии. Основные принципы моделирования временных рядов. Изменения характера тенденции временного ряда.
контрольная работа, добавлен 17.10.2014Построение поля и расчёт линейного коэффициента корреляции. Построение линейного уравнения множественной регрессии и расчёт коэффициента множественной детерминации. Определение коэффициента автокорреляции первого порядка и построение уравнения тренда.
контрольная работа, добавлен 04.02.2013Уравнение линейной парной регрессии одного признака от другого. Расчет линейного коэффициента парной корреляции и коэффициента детерминации. Уравнение множественной регрессии, выбор факторов. Автокорреляция уровней временного ряда, его структура.
контрольная работа, добавлен 21.01.2013Общие понятия эконометрических моделей и задачи экономического анализа, решаемые на их основе. Применение регрессионного анализа в экономике. Определение параметров модели парной линейной регрессии. Модели стационарных и нестационарных временных рядов.
курс лекций, добавлен 14.10.2017Оценка качества статистической модели через среднюю ошибку аппроксимации и F-критерий Фишера. Теснота связи для линейного уравнения регрессии. Определение коэффициента множественной корреляции. Построение автокорреляционной функции временного ряда.
контрольная работа, добавлен 03.06.2014Определение корреляционной зависимости между величинами. Характеристика значимости нелинейной корреляции для множественного уравнения парной регрессии. Оценка качества модели функции регрессии и её параметров. Изучение методов наименьших квадратов.
курсовая работа, добавлен 26.04.2013Изучение характеристик модели (коэффициента корреляции, коэффициента детерминации, остатков, значимости F-критерия Фишера). Рассмотрение экономической интерпретации коэффициентов модели. Использование расчета показателя относительной ошибки аппроксимации.
задача, добавлен 15.04.2014Факторы, влияющие на инновационную активность организаций. Эконометрический анализ инновационной деятельности при помощи пакета Statistica, получение оценочной модели множественной регрессии. Показатели объема инновационных товаров, работ и услуг.
статья, добавлен 11.09.2018