О наилучшей аппроксимации абсолютно монотонными функциями на полуоси
Изучение единственной абсолютно монотонной функции наилучшего равномерного приближения на отрезке. Использование специального критерия единственности наилучшего приближения клином. Применение теоремы для других конусов, состоящих из непрерывных функций.
Подобные документы
Методы поиска точек экстремума функции на отрезке: простого перебора, золотого сечения, деления отрезка. Сущность и содержание методов с использованием информации о производной функции: средней точки, касательной, секущих, кубической аппроксимации.
контрольная работа, добавлен 28.12.2014Представление и характеристика игр, экстенсивная и нормальная формы. Применение теории игр, нормативный анализ (выявление наилучшего результата). Типы игр: кооперативные, симметричные, параллельные, последовательные, дискретные, непрерывные и др.
реферат, добавлен 04.12.2014Свойства и методы вычисления пределов функций одной переменной. Исследование свойств функций, непрерывных в точке и на интервале, их корни и промежуточные значения, точки разрывов и их классификация. Использование метода сечений при построении графика.
эссе, добавлен 28.07.2013Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012Свойства системы тригонометрических функций. Ортогональность функций на отрезке. Нахождение интеграла по отрезку от произведения любых двух функций системы. Проведение проверки свойств для всех функций системы. Определение подынтегральной функции.
презентация, добавлен 18.09.2013Локальный экстремум функции. Отыскание наибольшего и наименьшего значения непрерывной функции на отрезке. Расчет интервалов выпуклости графика кривой и точек перегиба функции. Определение интервалов возрастания и убывания функций с помощью производных.
лекция, добавлен 07.07.2015Определение и характерные свойства мероморфной функции, исследование ее асимптотики. Изучение и доказательство теоремы единственности, а также методика получения конструктивной процедуры решения обратной задачи для пучков дифференциальных операторов.
статья, добавлен 22.02.2015Изучение античной греческой математики. Построение качественных, линейных количественных и нелинейных количественных моделей. Процесс структуризации данных. Уточнения и приближения. Корреляция и каузация. Аппроксимация функции конечным рядом Фурье.
контрольная работа, добавлен 29.10.2021Вычисление пределов функций без использования правила Лопиталя. Нахождение производных функций с использованием формул и правил дифференцирования. Нахождение наибольшего и наименьшего значения функции на отрезке. Нахождение интервалов монотонности.
контрольная работа, добавлен 06.01.2015Исследование поведения функций одной переменной, построение графиков. Изучение порядка математических действий по отысканию локального экстремума. Поиск наибольших и наименьших значений непрерывной на отрезке функции. Точки пересечения с осями координат.
лекция, добавлен 26.01.2014Сущность и содержание аппроксимации функций, ее основные методы и сравнительная характеристика: интерполяция и среднеквадратичное приближение. Интерполяция как один из способов аппроксимации функций. Разновидности многочленов и способы интерполяции.
лекция, добавлен 14.05.2013Сущность и схема метода Монте-Карло, оценка его погрешности и практическое использование для решения задач, связанных с системами массового обслуживания. Предельные теоремы теории вероятностей, применение способа усреднения подынтегральной функции.
контрольная работа, добавлен 10.01.2012Проекционный метод Галеркина, сущность метода коллокаций и наименьших квадратов, их преимущества и недостатки. Решение краевой задачи различными методами. Оценка погрешности применения данных методов относительно точного решения в конкретных точках.
дипломная работа, добавлен 07.11.2012Анализ критерия согласия Колмогорова и омега-квадрата в случае простой гипотезы. Критерии согласия Пирсона и Фишера и их применение в математической статистике. Использование этой категории для распределения Пуассона. Случаи практического применения.
курсовая работа, добавлен 29.08.2014Определенный интеграл по Риману. Теоремы о существовании интеграла от непрерывной и монотонной функции. Неравенства и теорема о среднем. Приближенное вычисление определенных интегралов. Метод параболических трапеций (метод Симпсона). Суть числовых рядов.
контрольная работа, добавлен 20.02.2012Связь между понятиями аналитических и гармонических функций. Отличия отличной от постоянной гармонической функции, что не может достигать экстремума во внутренней точке области определения. Граничная теорема единственности теории аналитических функций.
курсовая работа, добавлен 14.06.2023Рассмотрение уравнений второго порядка, разрешенных относительно второй производной. Формулировка и доказательство теоремы Коши (о существовании и единственности решения дифференциального уравнения). Геометрический смысл теоремы, ее общее решение.
презентация, добавлен 17.09.2013Свойства циклоиды, её геометрическое определение. Площадь и длина дуги арки циклоиды. Объём тела, полученного вращением арки. Таутохронное свойство и применение его для создания наилучшего маятника. Кривые линии до и после интегрального исчисления.
курсовая работа, добавлен 02.06.2016Матрица как прямоугольная таблица, которая составлена из чисел. Общая характеристика основных свойств обратной матрицы, анализ способов нахождения. Рассмотрение проблем выбора начального приближения. Знакомство с особенностями метода Гаусса-Жордана.
реферат, добавлен 20.05.2021Постановка задачи одномерной минимизации и классификация одномерных функций. Алгоритм Свенна для поиска интервала унимодальности. Разработка алгоритма последовательной квадратичной аппроксимации. Расчет коэффициентов аппроксимации в Microsoft Excel.
курсовая работа, добавлен 19.06.2014- 71. Обратная матрица
Обратная матрица, её свойства, определитель, транспонирование. Характеристика способов нахождения обратной матрицы: точечные, итерационные. Метод Гаусса-Жордана, разложение, использование союзных матриц. Методы Шульца, выбор начального приближения.
реферат, добавлен 25.03.2016 Изучение проблемы формализации алгоритма (рекурсивных функций). Определение частичной функции и упорядочивание последовательности. Теория вычислимости и тезис Черча. Элементарные операции над простейшими функциями: композиция, соединение и рекурсия.
контрольная работа, добавлен 15.04.2015Определение пределов последовательности и функции. Точки непрерывности и точки разрыва функции, производные и их приложения. Анализ примеров нахождения производных. Наибольшее и наименьшее значение функции на отрезке, ее исследование на экстремум.
контрольная работа, добавлен 23.01.2015Доказательство того, что многочлен Бернулли четного (нечетного) порядка равен абсолютно сходящемуся ряду по объединению хаосов Радемахера четных (нечетных) порядков. Система функций Уолша. Определение одночленов Бернулли. Разложения первых многочленов.
статья, добавлен 31.05.2013Теорема о существовании корня непрерывной функции. Методы отделения и уточнения корней: алгоритмы, скорость сходимости, условия применимости, их результаты. Геометрическая интерпретация методов Ньютона и хорд. Варианты выбора начального приближения.
презентация, добавлен 30.10.2013