Ортогональные разложения на группах корней из единицы
Для различных приложений функций нескольких переменных построен алгебраический подход к построению многочленов, формулы которых содержат символьные переменные. Примеры демонстрируют эффективность и широкий охват решаемых научно-технических задач.
Подобные документы
Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.
курс лекций, добавлен 23.10.2013Многочлен или полином: алгебраическая сумма одночленов. Операции над многочленами, их кольцо над областью целостности. Схема Горнера и теорема Безу. Вычисление наибольшего общего делителя. Наименьшее общее кратное. Сравнения многочленов по многочлену.
реферат, добавлен 06.03.2010Основная теория алгебры. Корни многочлена и его производной. Свойства неприводимых многочленов. Алгоритмы разложения на неприводимые множители. Формула обращения Мёбиуса. Теоремы дополнения, сложения аргументов и умножения. Арифметические свойства чисел.
книга, добавлен 28.12.2013Изучение дискретных ортогональных преобразований. Математические основы кратномасштабного анализа. Особенность разложения функций на вейвлетные ряды. Фильтры дуальной декомпозиции и реконструкции сигналов. Ортогональные и биортогональные вейвлеты.
лекция, добавлен 15.11.2018Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.
курсовая работа, добавлен 17.03.2014Задание булевых функций от переменных с помощью таблицы истинности, определение формулы, виды важнейших равносильностей (законов) алгебры логики. Равносильные формулы, законы равносильности, логические уравнения. Разложение булевых функций по переменным.
лабораторная работа, добавлен 09.08.2010Изучение основных операций с символьными величинами в среде Matlab, понятия переменных и функций. Характеристика способов представления матриц и векторов и работа с ними, графическое представление функций в среде Matlab и систематизация изученных данных.
курсовая работа, добавлен 20.03.2014Определение двойных, тройных и криволинейных интегралов, их свойства и вычисление, замена переменных, сферические координаты. Условия независимости криволинейного интеграла от пути интегрирования. Восстановление функции по её полному дифференциалу.
контрольная работа, добавлен 09.04.2016Тригонометрическая система функций. Формулы интеграла Фурье для различных функций. Применение преобразования Фурье к задачам математической физики, электротехники. Решение уравнения Бесселя, возникающего при разделении переменных. Гармонический анализ.
курс лекций, добавлен 29.09.2014Вычисление определителя четвертого порядка, способов разложения его по элементам. Характеристика основных свойств определителей. Исследование системы линейных алгебраических уравнений (основных понятий и определений). Методы применения формулы Крамера.
презентация, добавлен 29.08.2015Основные понятия, определения и теоремы асимптотической последовательности и асимптотического ряда. Примеры гамма-функций, интегральных дзета-функций Римана и функций ошибок. Общие свойства обобщённого разложения с обычным асимптотическим разложением.
практическая работа, добавлен 07.09.2016Характеристика сущности и свойств матрицы. Анализ специфики ортогональных и унитарных матриц. Изучение детерминант матриц и их свойств. Примеры нахождения определителей N-го порядка. Примеры решения задач на определение видов и детерминант матриц.
курсовая работа, добавлен 31.10.2017Понятие и типы многочленов. Кольцо симметрических многочленов. Наиболее общий способ получения симметрических многочленов, формулирование теоремы. Доказательство существования многочлена с использованием принципа математической индукции, результант.
курсовая работа, добавлен 18.03.2013Определение многочленов Чебышева, их краткая характеристика и особенности. Рассмотрение случая произвольного отрезка. Описание дифференциального уравнения многочленов и квадратурной формулы, сравнение их погрешностей. Общее понятие термина алгоритм.
курсовая работа, добавлен 14.04.2014Метод разложения на множители, его применение. Метод замены переменных и сведение к алгебраическим уравнениям. Универсальная тригонометрическая подстановка. Порядок введения вспомогательного аргумента. Решение системы тригонометрических уравнений.
методичка, добавлен 22.03.2014Способы деления многочленов. Основная теорема алгебры комплексных чисел. Особенности попарного выделения сопряженных корней. Правила представления неправильных дробей. Использование метода неопределенных коэффициентов. Разложение функций на множители.
лекция, добавлен 09.07.2015Использование алгебраического метода решения задач на построение в теории конструктивных задач. Определение взаимосвязи алгебры и геометрии. Обзор примеров задач на построение и схем их решения. Построение отрезков, заданных основными формулами.
курсовая работа, добавлен 25.01.2017Сущность и введение мнимой единицы, понятие комплексного аргумента. Особенности алгебраической, тригонометрической и экспоненциальной формы записи комплексного числа. Вычитание, сложение, деление и умножение комплексных чисел, их извлечение из корней.
презентация, добавлен 16.01.2018- 44. Булевы функции
Существенная и фиктивная переменная функции. Наборы значений, которые принимают переменные. Функция, полученная с помощью подстановок функций друг в друга на места переменных, а также с помощью переименования этих переменных. Выражение суперпозиции.
контрольная работа, добавлен 24.09.2012 Задачи на определение функции пользователя и вычисление ее значения для различных значений аргумента. Примеры решения нелинейного уравнения различными методами. Выполнение проверки корней уравнения графически и подстановкой корней в исходное уравнение.
контрольная работа, добавлен 03.06.2011Сущность и характерные особенности функции нескольких переменных, порядок расчета и анализа ее дифференциала. Определение частных производных. Применение дифференциала к приближенным вычислениям. Метод множителей Лагранжа и наименьших квадратов.
методичка, добавлен 19.09.2017Математический анализ как наука. Изучение задач на нахождение максимума и минимума. Экстремумы одной, трех и многих переменных. Метод вычисления критериев Сильвестера. Множитель Лагранжа. Стационарные точки функций. Факты дифференциального исчисления.
дипломная работа, добавлен 16.01.2014Ознакомление с формулами прогрессии многочленов второй степени. Рассмотрение процесса построения трапеций из формул многочленов. Определение чисел, которые принадлежат прогрессии многочлена третьей степени. Изучение и анализ процесса расписания трапеции.
статья, добавлен 30.03.2017- 49. Многочлены
Многочлен как один из важнейших классов элементарных функций. Целый ряд преобразований в математике, связанный с изучением многочленов. Коэффициенты многочлена из определённого коммутативного кольца. Множества, определённые как решения систем многочленов.
контрольная работа, добавлен 23.04.2011 Формулы сокращенного умножения и разложения на множители, степени и корни, квадратное уравнение, прогрессии (арифметическая, геометрическая) математики. Тригонометрия (формулы сложения двойного и половинного аргумента), геометрия и стереометрия.
шпаргалка, добавлен 01.05.2009