Численные методы интегрирования дифференциальных уравнений первого порядка

Исследования различных методов интегрирования дифференциальных уравнений по точности вычисления. Структурная схема алгоритма и листинг программы Matlab. Реализация методов Эйлера, Эйлера-Коши и Рунге-Кутта 3 порядка. Экстраполяционный метод Адамса.

Подобные документы

  • Изучение и характеристика специфических особенностей обыкновенных дифференциальных уравнений. Рассмотрение свойств методов Рунге-Кутта. Ознакомление с исправленным методом Эйлера. Исследование и анализ процесса выбора метода реализации программы.

    курсовая работа, добавлен 02.11.2017

  • Приближенное решение дифференциальных уравнений первого порядка методом Эйлера. Рассмотрение основных причин погрешностей решения задач. Реализация алгоритма с помощью языка программирования C# и компьютерной программы Microsoft Visual Studio 2005.

    курсовая работа, добавлен 03.09.2012

  • Особенность изучения модифицированного метода Эйлера интегрирования дифференциальных уравнений первого порядка и способа достижения требуемой точности получаемого приближенного решения. Составление блок-схемы алгоритма вычисления поставленной задачи.

    лабораторная работа, добавлен 11.02.2016

  • Поиск решения обыкновенного дифференциального уравнения модифицированным методом Эйлера-Коши (Хьюна) и системы обыкновенных уравнений методом Рунге-Кутта. Теоретическое описание используемых методов. Текст программы с соответствующими комментариями.

    курсовая работа, добавлен 02.12.2014

  • Решение алгебраических уравнений по заданным входным параметрам и выходным аргументам. Решение дифференциальных уравнений с использованием классических алгоритмов численных методов Эйлера и Рунге-Кутта. Написание текстов файл-функций и файл-программ.

    контрольная работа, добавлен 19.08.2017

  • Усовершенствованный метод Эйлера. Решение дифференциального уравнения первого порядка. Точность метода Эйлера. Проверка устойчивости решения. Интервал исчисления и шаг операций. Программы на языке Turbo Pascal для решения дифференциальных уравнений.

    курсовая работа, добавлен 15.06.2013

  • Общая характеристика метода Эйлера, применяемого для решения линейных систем алгебраических уравнений. Анализ влияния шага на ошибки интегрирования и число итераций. Составление программы на языке MatLAB и ее тестирование при различных исходных данных.

    курсовая работа, добавлен 12.04.2014

  • Особенность численного решения системы дифференциальных уравнений в среде MathCad. Характеристика метода Рунге-Кутта и модифицированного способа Эйлера. Главный анализ вычисления задачи аппроксимации. Сущность реализации количественного интегрирования.

    контрольная работа, добавлен 30.10.2015

  • Углубленное рассмотрение возможностей численного решения дифференциальных уравнений. Изучение и обоснование возможностей применения метода Эйлера и рассмотрение примеров решений данными методами. Встроенные процедуры решения дифференциальных уравнений.

    курсовая работа, добавлен 23.05.2021

  • Применение обыкновенных дифференциальных уравнений для математического моделирования процессов в химической технологии. Сущность и использование метода Рунге-Кутта для программного моделирования кинетической схемы химического процесса на языке Паскаль.

    курсовая работа, добавлен 12.04.2012

  • Виды дифференциальных уравнений. Функции для решения дифференциальных уравнений в MathCad. Понятия устойчивости и предельного цикла в MathCad. Создание компьютерных моделей для исследования кусочно-линейных дифференциальных уравнений третьего порядка.

    дипломная работа, добавлен 14.12.2019

  • Вычисление вектора частного решения неоднородной системы дифференциальных уравнений. Методика "переноса краевых условий" в произвольную точку интервала интегрирования. Расчет обратной матрицы. Замена метода численного интегрирования Рунге-Кутта.

    научная работа, добавлен 26.06.2016

  • Описание процесса построения параллельных алгоритмов управления шагом интегрирования при решении задач Коши для систем обыкновенных дифференциальных уравнений. Характеристика, особенности коллокационных одношаговых и многошаговых блочных методов.

    статья, добавлен 28.02.2016

  • Дифференциальное уравнение первого порядка, решение задачи Коши, сущность метода Рунге-Кутта. Выбор языка программирования вычислительной системы. Разработка программного обеспечения для решения математических функций и тестирование его эффективности.

    курсовая работа, добавлен 16.05.2016

  • Метод хорд при приближенном вычислении алгебраических и трансцендентных уравнений. Решение системных линейных уравнений методом Зейделя и дифференциальных уравнений методом Рунге-Кутта. Блок-схемы процедур mhord, myzend, mykutt. Описание интерфейса.

    курсовая работа, добавлен 13.01.2015

  • Решение систем обыкновенных дифференциальных уравнений в нейросетевом базисе. Схема соединения нейронов, реализующая решение системы обыкновенных дифференциальных уравнений в нейросетевом базисе методом Рунге-Кутты 1-го порядка. Графики решения задачи.

    контрольная работа, добавлен 10.12.2012

  • Понятие дифференциальных уравнений. Рассмотрение теоретических знаний в вопросе численного решения дифференциальных уравнений на основе метода Рунге-Кутты и основных свойств данного метода. Приобретение опыта решения дифференциального уравнения.

    реферат, добавлен 22.03.2014

  • Случай переменных коэффициентов. Формула для вычисления вектора частного решения неоднородной системы дифференциальных уравнений. Метод дополнительных краевых условий. Вычисление вектора частного решения неоднородной системы дифференциальных уравнений.

    учебное пособие, добавлен 17.02.2013

  • Анализ электрических цепей. Системы автоматического анализа. Реализация методов анализа электрических цепей в MathCAD. Применение метода Эйлера и метода Рунге-Кутта. Решение дифференциального уравнения первого порядка. Зависимость напряжения от емкости.

    курсовая работа, добавлен 16.07.2013

  • Приведение численных методов решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений, определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач программирования.

    учебное пособие, добавлен 09.12.2014

  • Обзор задачи Коши для обыкновенных дифференциальных уравнений, поиск решения методом генетического программирования. Разработка, исследование, настройка алгоритма генетического программирования элементарными функциями или приближенным символьным решением.

    статья, добавлен 18.01.2018

  • Изучение методов решения систем обыкновенных дифференциальных уравнений. Моделирование заданного физического процесса движения тележки, помещенной в ящик с использованием системы линейных уравнений. Анализ программирования в среде C++Builder XE2.

    реферат, добавлен 16.07.2013

  • Численные методы решения нелинейных уравнений, систем линейных и нелинейных алгебраических уравнений, дифференциальных уравнений и определенных интегралов. Методы аппроксимации дискретных функций и методы решения задач линейного программирования.

    методичка, добавлен 27.02.2012

  • Использование метода Рунге-Кутты-Фельберга для численного решения обыкновенных дифференциальных уравнений и их систем. Основные методы нахождения порядка аппроксимации. Внешний вид процедуры для определения номера самой левой точки в массиве данных.

    контрольная работа, добавлен 28.04.2014

  • На примере дифференциальных уравнений первого и второго порядка изучение этапов подготовки и моделирования объектов регулирования и составление блок-схемы и модели в среде Simulink как объект первого порядка путем нахождения коэффициентов усиления.

    контрольная работа, добавлен 10.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.