Векторная алгебра
Изучение линейных операций над свободными векторами (сложение векторов и умножение вектора на число). Линейные операции на множестве. Критерий коллинеарности. Правило треугольника и параллелограмма. Определение векторного пространства. Базис совокупности.
Подобные документы
- 26. Линейная алгебра
Матрицы и определители. Линейные операции над матрицами и их умножение. Свойства определителей. Системы линейных алгебраических уравнений. Метод Крамера и Гаусса Ранг. Теорема Кронекера-Капелли. Системы линейных однородных уравнений. Модель Леонтьева.
лекция, добавлен 28.07.2015 - 27. Теория вектора
Характеристика вектора, как семейства параллельных между собой одинаково направленных и имеющих одинаковую длину отрезков. Сложение и равенство векторов, свойства операций над ними, скалярное произведение двух векторов. Доказательства и решения задач.
контрольная работа, добавлен 26.10.2009 - 28. Линейная алгебра
Понятие евклидова пространства. Коллинеарные векторы. Размерность и базис векторного пространства. Операции над матрицами. Линейное преобразование переменных. Теорема о делении с остатком. Понятие квадратичной формы, исчисление ее канонического базиса.
дипломная работа, добавлен 17.01.2011 - 29. Понятие вектора
Определение вектора. Его коллинеарный и компланарный вид. Простейшие геометрические операции над векторами. Их линейная зависимость. Координатное представление скалярного и смешанного произведения слагаемых. Свойства направленного отрезка прямой в базисе.
лекция, добавлен 23.12.2013 Системы линейных алгебраических уравнений и метод последовательного исключения неизвестных. Матрица, обратная матрица и метод Крамера. Определение векторного пространства и его нетривиальная комбинация. Системы векторов и алгебраические переходы.
учебное пособие, добавлен 23.11.2012Решение систем линейных уравнений методом Гаусса. Линейные операции над векторами и разложение вектора по ортам координатных осей. Геометрический и физический смысл определенного интеграла. Предел и непрерывность функции комплексного переменного.
курс лекций, добавлен 18.04.2016Линейные операции с матрицами: сложение и умножение. Замена элементов матрицы на соответствующие алгебраические дополнения с последующим транспонированием. Разложение определителя по его столбцу. Элементы главной диагонали. Поэлементное сложение данных.
лекция, добавлен 29.09.2013Базис в трёхмерном пространстве как любая упорядоченная тройка линейно независимых векторов. Методика определения коэффициентов разложения векторов на плоскости. Анализ условий, при выполнении которых ортогональный базис называется ортонормированным.
контрольная работа, добавлен 29.02.2020Понятие таблиц чисел, так называемых матриц, с помощью которых удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи. Определение линейного преобразования.
контрольная работа, добавлен 14.04.2011Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.
лекция, добавлен 26.01.2014Линейные пространства прямоугольных и квадратных матриц, многочленов и непрерывных вещественных функций. Теоремы, применяемые к квадратным матрицам. Зависимость в линейных пространствах и линейная комбинация элементов. Линейно независимые подсистемы.
лекция, добавлен 18.02.2010Виды матриц. Их сложение и умножение на число. Формула произведения согласованных матриц. Свойства линейных операций. Транспонирование математических таблиц. Характеристика определителей и их вычисление. Понятие минора и алгебраического дополнения.
презентация, добавлен 29.08.2015Определение коллинеарности векторов. Вычисление координат точки пересечения медиан и высот треугольника. Составление уравнения прямой, проходящей через его вершину параллельно стороне. Расчет площади основания пирамиды, используя произведения векторов.
контрольная работа, добавлен 17.11.2017- 39. Алгебра матриц
Типы алгебраических структур. Скалярное умножение арифметических векторов. Теория делимости квадратных матриц. Разложение матрицы в произведение простейших. Умножение матрицы на число. Элементарные преобразования над матрицами и элементарные матрицы.
методичка, добавлен 19.09.2015 - 40. Линейная алгебра
Некоторые простейшие свойства линейных пространств, базис и координаты элементов линейного пространства. Критерий совместности общей линейной системы уравнений. Основные метрические понятия в евклидовом пространстве. Неравенство Коши-Буняковского.
учебное пособие, добавлен 13.02.2016 Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.
контрольная работа, добавлен 11.03.2011- 42. Линейная алгебра
Понятия линейной алгебры и матричного множества. Определители квадратных матриц второго, третьего и высших порядков. Правило Крамера для решения систем линейных уравнений первой степени. Ортогональные функции как базис функционального пространства.
реферат, добавлен 30.05.2022 Матрицы с нулевым определителем. Прямоугольная декартова система координат на плоскости. Скалярное и смешанное произведение векторов, а также условие коллинеарности. Канонические уравнения эллипса, окружности и параболы. Основные теоремы пределов.
лекция, добавлен 30.11.2010- 44. Алгебра матриц
Базовые действия над матрицами: сложение, вычитание, умножение на число, умножение матрицы на матрицу, также операция деления на матрицу. Теорема невырожденной квадратной матрицы. Понятие обратной матрицы и решение уравнения. Базисный минор и ранг.
реферат, добавлен 07.04.2015 Виды матриц, линейные операции над ними. Умножение квадратных матриц первого и второго порядков. Вычисление обратных матриц второго и третьего порядков. Решение линейных уравнений методами Крамера и Гаусса. Применение матриц в различных областях науки.
реферат, добавлен 02.12.2014Понятие, основные виды (скалярная, единичная, нулевая, транспонированная) и равенство матриц как множества чисел, образующих прямоугольную таблицу, определение вектора. Характеристика операций над матрицами в линейной алгебре. Свойства умножения матриц.
лекция, добавлен 18.03.2016- 47. Десятичные дроби
История возникновения обозначений десятичных и обыкновенных дробей в разных странах. Правила математических действий над десятичными дробями (сложение; вычитание; умножение на натуральное число; деление на натуральное число и на десятичную дробь).
реферат, добавлен 06.03.2010 Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.
курс лекций, добавлен 05.01.2016Определение ранга расширенной матрицы системы. Решение системы по формулам Крамера. Средства векторной алгебры. Разложение вектора в базисе по векторам. Уравнение прямой, проходящей через две точки. Определение знаков неравенств. Точки разрыва функции.
контрольная работа, добавлен 03.02.2017Понятие и структура матриц, их классификация и типы, подходы к анализу. Типы и свойства операций, производимых над матрицами: сложение, умножение. Понятие определителя матрицы, а также правила его вычисления. Системы линейных алгебраических уравнений.
лекция, добавлен 12.11.2017