О мощности множества всех множеств в теории множеств с самопринадлежностью

Описание свойства множества всех множеств – его несамоподобие, с использованием утверждения о количестве точек на прямой между двумя точками. Показано, что мощность множества всех множеств больше, чем мощность самоподобного множества; доказательства.

Подобные документы

  • Сущность перспективности математических моделей, учитывающих стохастическую неопределенность и нечеткость. Описание вероятностных множеств в смысле Hirota. Моделирование операций над нечеткими вероятностными множествами. Треугольные нормы и конормы.

    статья, добавлен 29.10.2013

  • Определение и свойства модуля (абсолютной величины) действительного числа. Расстояние между точками числовой прямой. Графическое изображение на прямой окрестности точки как множества решений неравенства. Изучение правил сложения и вычитания модулей.

    презентация, добавлен 21.09.2013

  • Множества, операции над ними. Соответствия и функции. Элементы общей алгебры. Различные виды алгебраических структур. Элементы математической логики. Логические функции. Булевы алгебры и теория множеств. Язык логики предикатов. Классы графов и их частей.

    курс лекций, добавлен 07.04.2013

  • Образование множеств и выполнение элементарных операций. Образование подстановки её степеней. Последовательные степени до получения тождественной подстановки. Малая конечная арифметика. Работа по правилу неповторяемости элементов в строках и столбцах.

    контрольная работа, добавлен 29.03.2017

  • Множества и основные операции над множествами. Упорядоченные пары и прямое произведение множеств. Основные законы и формулы комбинаторики. Логика высказываний: основные понятия, формулы, логические операции, составные высказывания и законы логики.

    реферат, добавлен 07.11.2015

  • Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.

    реферат, добавлен 22.05.2017

  • Понятия графа в математической теории как совокупности непустого множества вершин и множества пар вершин. Направленность графов, ограничения на количество связей и дополнительные данные о вершинах или ребрах. Способы задания графов, матрица смежности.

    контрольная работа, добавлен 29.08.2010

  • Понятие линейной, неотрицательной и выпуклой комбинации точек плоскости и n-мерного пространства. Неравенство Коши-Буняковского, неравенство треугольника и множества: связные, несвязные, ограниченные, неограниченные. Замкнутость и компактные множества.

    лекция, добавлен 21.09.2017

  • Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.

    лекция, добавлен 12.07.2015

  • Аксиомы топологии, примеры топологических пространств. Понятие про открытое и замкнутое множество. Аксиомы булевой алгебры, примеры. Булево объединение и пересечение произвольного семейства элементов алгебры. Понятие про регулярные замкнутые множества.

    курсовая работа, добавлен 10.07.2012

  • Аксиомы теории Цернело-Френкеля по устранению. Аксиома выбора как один из важнейших теоретико-множественных принципов, альтернативные формулировки аксиомы и её применение. Принцип вполне упорядочивания и лемма Цорна для частично упорядоченных множеств.

    реферат, добавлен 11.10.2014

  • Описание аналога теоремы Какутани о неподвижных точках многозначного отображения в теории множеств с самопринадлежностью. Суть рекомбинации товаров при производстве новых товаров. Совпадение видов неподвижных точек с действительной структурой экономики.

    статья, добавлен 26.04.2019

  • Сведения из теории множеств. Натуральные и целые числа: отношение эквивалентности, арифметические операции, отношение порядка на множестве. Изучение вещественных чисел. Анализ особенностей введения действительных чисел для студентов и школьников.

    курсовая работа, добавлен 18.05.2016

  • Примеры конечных и бесконечных множеств с помощью перечисления или описания. Прямые произведения множеств, сочетаний, размещений, перестановок. Способы представления бинарных отношений. Анализ рефлексивных, симметричных, транзитивных бинарных отношений.

    шпаргалка, добавлен 27.10.2013

  • Рассмотрение теоремы Нагорного об удвоении слов в алфавите. Неформализуемость в лямбда-исчислении непредикативных конструкций. Изучение сущности теории множеств с самопринадлежностью. Математическое описание иерархии логических структур одного уровня.

    статья, добавлен 26.04.2019

  • Операции над множествами. Декартово произведение множеств. Бинарные отношения, функции и порядок. Область значений бинарного отношения. Класс эквивалентности элемента. Сочетания, размещения и перестановки элементов. Бином Ньютона, теория алгоритмов.

    реферат, добавлен 19.01.2012

  • Изучение дифференциального и интегрального исчисления. Анализ применения Дзета-функции Римана в теории чисел. Определение понятия функции: закона, по которому каждому элементу множества X ставится в соответствие один или несколько элементов множества Y.

    курсовая работа, добавлен 30.10.2010

  • Функция как математическое понятие, отражающее однозначную парную связь элементов одного множества с элементами из другого множества. Топология пространства арифметических векторов. Компактные множество и линейные отображения. Теорема Кантора и Бореля.

    методичка, добавлен 07.08.2015

  • Определение понятия множества чисел и классификация их систем. Характеристика и доказательство аксиом Пеано по методу математической индукции. Исследование теорем о множестве целых чисел. Очерк сущности множества рациональных и комплексных чисел.

    реферат, добавлен 29.10.2013

  • Понятия предела функции, замыкания множества и компактности в метрическом пространстве. Теория фильтров при изучении сходимости в топологических пространствах. Рефлексивное и транзитивное отношение предпорядка. Симметричный и антисимметричный предпорядок.

    контрольная работа, добавлен 11.12.2012

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Определение суммы вероятностей всех элементарных событий. Формула нахождения вероятности наступления определенного количества успехов в серии из множества испытаний Бернулли. Несовместные - исходы, которые не наступают при проведении одного опыта.

    презентация, добавлен 09.11.2015

  • Понятие независимой переменной и зависимой переменной функции. Методика построения графика функции - множества всех точек координатной плоскости, абсциссы которых равны значениям независимой переменной, а ординаты - соответствующим значениям функции.

    презентация, добавлен 07.11.2012

  • Поведение функций трудоемкости количественно-зависимых алгоритмов в реальных интервалах значений мощности множества исходных данных. Использование аппарата интервального анализа для сравнения функций, реализованного в виде программы на языке С++.

    лабораторная работа, добавлен 02.04.2015

  • Доказательство условий, при выполнении которых семейство регулярных функций множества, заданных на алгебре подмножеств топологического пространства и принимающих значения в произвольном топологическом пространстве, являются равномерно исчерпывающими.

    статья, добавлен 31.05.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.