Алгоритм прогнозирования селекционной ценности образцов тритикале на основе искусственных нейронных сетей
Методика прогнозирования селекционной ценности зерновых культур на стадии селекции. Алгоритм на основе искусственных нейронных сетей. Прогноз селекционной ценности пищевого сырья из 210 образцов тритикале коллекции урожая, оценка его эффективности.
Подобные документы
Знакомство со средствами, методами MATLAB. Характеристика типичной сети с прямой передачей сигнала. Моделирование нейронных сетей с помощью пакета Simulink. Применение нейронных сетей для аппроксимации функций. Работа с нейронной сетью в командном режиме.
методичка, добавлен 26.11.2015Проблема поиска глобального экстремума для негладких, многоэкстремальных целевых функций на ограниченном множестве в пространстве. Новая модификация адаптивного нечетко-нейронного алгоритма глобальной оптимизации. Оценка основных инверсных регрессий.
статья, добавлен 08.02.2013Теоретические основы нейронных сетей: применение, топология, обучения. Полезные свойства систем содержащих нейронные сети. Содержательная сущность поддержки принятия решений. Оценка возможностей нейронных сетей в системе поддержки принятия решений.
курсовая работа, добавлен 22.05.2018Рассмотрение вопросов, связанных с решением задачи построения и обработки когнитивных структур на основе использования нейронных сетей. Организация специализированной модели, настроенной на решения поставленной задачи "Нейросетевая когнитивная модель".
статья, добавлен 23.08.2020Техническая диагностика электротехнических систем (ЭТС) на основе современных информационных технологий. Прогнозный и диагностический модули статистической обработки состояния ЭТС. Возможности искусственных нейронных сетей в диагностировании ЭТС.
статья, добавлен 06.05.2018Ассоциативная память на основе искусственной нейронной сети. Извлечение информации из ассоциативной памяти. Степень ортогональности и ее оценка при помощи Евклидова расстояния. Ключевые характеристики, определяющие качество пространственной группировки.
статья, добавлен 29.06.2017Расшифровка алгоритмов управления процессом и решение фундаментальной биологической проблемы клеточной и тканевой инженерии, создание искусственных органов in vitro. Использование системы математического и инженерного моделирования Matlab&Simulink.
статья, добавлен 27.02.2019- 83. Прогнозирование котировок финансовых инструментов с помощью нейронных сетей и машинного обучения
Анализ существующих решений в прогнозировании котировок. Программные комплексы для автоматической торговли на основе нейронных сетей. Составление плана проектирования программного комплекса. Разработка резюме проектирования остальных обработчиков.
контрольная работа, добавлен 30.08.2016 Исследование принципов организации нейроподобных сетей для решения задач искусственного интеллекта. Анализ архитектуры ассоциативно-проективной нейронной сетевой системы. Характеристика процедуры выбора части нейронов для передачи на верхний уровень.
лекция, добавлен 13.09.2017- 85. Разработка моделей для прогнозирования и анализа данных с применением пакета программ STATISTICA
Анализ методов и технологий Data Mining. Применение искусственных нейронных сетей. Освоение среды Data Miner и разработка моделей анализа данных с применением программ STATISTICA. Анализ результатов применения моделей прогнозирования и анализа данных.
дипломная работа, добавлен 14.12.2019 Характеристика метода многокритериального программно-корректируемого управления. Суть применения генетического программирования, конечных автоматов и искусственных нейронных сетей для построения системы подчинения беспилотным летательным аппаратом.
дипломная работа, добавлен 23.02.2015История возникновения, виды, свойства и обучение искусственных нейронных сетей. Технология самообучения и задачи, решаемые при помощи нейронной сети Кохонена. Ограничения, накладываемые на компьютерную имитационную модель, ее схемы в среде MatLab.
дипломная работа, добавлен 12.01.2012Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей. Возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 28.03.2022Основные направления, в которых на данный момент происходит активное развитие нейронных технологий и их практическое применение. Конкретные примеры использования нейронных сетей; возможности и перспективы развития подобных систем на современном этапе.
статья, добавлен 10.04.2023Разработка облика системы технического зрения для мобильных систем и программного обеспечения системы технического зрения. Исследование применения алгоритмов на основе глубоких нейронных сетей в задаче детектирования объектов дорожного движения.
дипломная работа, добавлен 08.06.2018Повышение эффективности процесса построения экспертных систем путем разработки информационной технологии. Использование развивающейся системы представления знаний на базе модели искусственных нейронных сетей, системы распределенного сетевого ввода данных.
автореферат, добавлен 01.09.2018Определение сущности системы поддержки принятия решений. Ознакомление с понятием "система искусственного интеллекта". Рассмотрение особенностей использования нейронных сетей в финансах и бизнесе. Анализ преимуществ прогнозирования на нейронных сетях.
курсовая работа, добавлен 17.10.2021Совершенствование инструментария по сбору, обработке и анализу информации. Описание такой аналитической технологии на основе использование искусственных нейронных сетей при проведении анализа в целях реализации управления правоохранительной сферой.
статья, добавлен 03.05.2019Получение качественного прогноза. Повышение качества и точности прогнозирования, посредством выбора метода прогнозирования и разработки программного продукта, построенного на нейронной сети. Экспериментальная оценка эффективности предлагаемых критериев.
статья, добавлен 21.02.2019Методика разработки состязательных атак, которые основаны на словах и показывают возможность и силу изменения предсказываемого класса нейросети. Анализ особенностей применения регрессионных значений Шепли для интерпретации глубоких нейронных сетей.
дипломная работа, добавлен 28.11.2019- 96. Нейрокомпьютеры
Понятие и принцип работы нейронных сетей. Типы нейронов и их функциональные особенности: биологические и искусственные. Базовые архитектуры нейронных сетей, их структура и элементы. Этапы программирования средств аппаратной поддержки нейровычислений.
контрольная работа, добавлен 14.10.2013 Создание классификационных и описательных шкал. Сбор исходной фактографической информации и ее ввод в систему обучающей выборки. Оценка ценности признаков для прогнозирования. Выделение признаков, наиболее существенных для решения поставленной задачи.
статья, добавлен 25.04.2017Анализ применения нейронных сетей для моделирования социальных или биологических систем с помощью программного пакета моделирования. Диагностический анализ изучения алгоритмов обучения нейронных сетей. Формулы для обучения методом наискорейшего спуска.
презентация, добавлен 03.12.2013Доказательство возможности аппроксимации непрерывных функций нейронными сетями в работах Колмогорова и Хехта Нильсена. Эффективность применения генетических алгоритмов к решению проблемы исследования таких сетей. Выбор операторов мутации и кроссовера.
статья, добавлен 22.08.2020Описание базовых задач для нейронных сетей и исторически первых методов настройки сетей для их решения: классификация (персептрон Розенблатта); ассоциативная память (сети Хопфилда); восстановление пробелов в данных; кластер-анализ (сети Кохонена).
курсовая работа, добавлен 04.04.2009