Неустойчивость динамического баланса в системах Лотки-Вольтерра с возмущением правой части
Основные закономерности, характеризующие модель сосуществования двух видов при слабых синусоидальных внешних воздействиях на скорость размножения. Система дифференциальных уравнений типа Лотки-Вольтерра. Устойчивость частот цикла невозмущенной системы.
Подобные документы
Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.
презентация, добавлен 30.10.2013Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Анализ устойчивости метода типа Розенброка 3 порядка для систем дифференциальных уравнений с квадратичной правой частью. Коэффициенты, при которых численная схема является устойчивой. Использование результатов расчетов на реакции диметилкарбоната.
статья, добавлен 29.06.2018Основные понятия теории систем дифференциальных уравнений на примере нормальных систем. Класс нормальных линейных однородных систем данных уравнений. Понятие фундаментальной системы решений. Задача Коша, метод Эйлера и исключения неизвестных функций.
лекция, добавлен 29.09.2014Дифференциальные уравнения и их применение в прикладных задачах. Математическая модель численного интегрирования дифференциальных уравнений. Математическое описание зависимости концентрации. Расчет профиля температур при нестационарной теплопроводности.
дипломная работа, добавлен 19.06.2015- 31. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Характеристика и обоснование преимуществ метода численного интегрирования обыкновенных дифференциальных уравнений, разработанного Эверхартом. Исследование алгоритма и основной идеи построения метода Эверхарта на примере решения уравнений разных видов.
статья, добавлен 03.03.2018Характеристика квазилинейных уравнений второго порядка. Разработка программы по исследованию уравнений. Составление функции, с помощью которой можно будет определить наличие предельного цикла в уравнении, периода одного полного цикла. Тестирование ПО.
дипломная работа, добавлен 14.12.2019Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015Решение дифференциальных уравнений с разветвляющимися переменными. Определение и решение однородных дифференциальных уравнений и уравнений в полных дифференциалах. Решение линейных дифференциальных уравнений первого порядка и уравнений Бернулли.
лекция, добавлен 14.03.2014Сущность линейных дифференциальных уравнений высших порядков. Характеристика однородных уравнения, основные свойства их решений. Определитель Вронского, его свойства. Линейная зависимость системы функций. Методы нахождения частного решения уравнения.
курс лекций, добавлен 23.10.2013Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.
курсовая работа, добавлен 11.06.2014Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Их геометрическая интерпретация. Устойчивость решения автономной системы и линейных дифференциальных уравнений с постоянными коэффициентами. Простейшие типы точек покоя.
контрольная работа, добавлен 22.01.2016Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.
презентация, добавлен 26.09.2017Классификация линейных интегральных уравнений. Уравнения Фредгольма и Вольтерра. Краевая задача на собственные значения и собственные функции (задача Штурма-Лиувилля). Поле экстремалей и функция Вейерштрасса. Изопериметрическая задача и задача Лагранжа.
курс лекций, добавлен 18.04.2014Понятие обыкновенных дифференциальных уравнений как уравнений, в которые входит независимая переменная и некоторые производные. Характеристика краевого условия, его функции. Место дифференциальных уравнений в частных производных и их определение.
презентация, добавлен 30.10.2013Использование системы MathCAD в исследовании математической модели колебательного движения системы с демпфером. Понятие математической модели и их классификация. Числовые методы решения дифференциальных уравнений. Функции дифференциальных уравнений.
курсовая работа, добавлен 26.02.2012Моделирование системы автоматического регулирования с постоянным запаздыванием. Система дифференциальных уравнений для регулирования системы с учетом влияния скорости ветра, мощности потребляемой электроэнергии и времени запаздывания по регулированию.
статья, добавлен 30.01.2013Анализ систем сингулярно возмущенных обыкновенных дифференциальных уравнений. Рассмотрение системы сингулярно возмущенных обыкновенных дифференциальных уравнений с аналитическими функциями в комплексной области. Области притяжения вырожденной системы.
статья, добавлен 11.11.2018Использование матричных уравнений в теории устойчивости движения, при решении дифференциальных уравнений Риккати и матриц Сильвестра. Формула неоднородного уравнения. Существенное отличие частного решения от конструкции в виде псевдообратного оператора.
статья, добавлен 30.10.2016Разработка методики получения приближенных аналитических решений исходных дифференциальных уравнений пограничных слоев, позволяющей получать решения практически с заданной степенью точности. Условия использования уравнений Прандтля и Польгаузена.
статья, добавлен 31.08.2018Роль полиномиальных систем в общей качественной теории автономных систем двух дифференциальных уравнений. Элементарное доказательство теоремы Берлинского А.Н. о числе особых точек второй группы системы. Исследование на ацикличность квадратичной системы.
статья, добавлен 05.07.2013Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.
курсовая работа, добавлен 04.12.2018Анализ результатов тестирования численного метода решения систем дифференциальных уравнений с задержанным аргументом, описывающих системы с хаотической динамикой, в пакете MatLab. Оценка фактической ошибки численного решения тестовой системы уравнений.
статья, добавлен 27.04.2019