История тригонометрии

История возникновения тригонометрии как науки, особенности ее формирования. Анализ вклада члена Российской академии наук Л. Эйлера в развитие современной тригонометрии. Общая характеристика и методика решения тригонометрических уравнений и неравенств.

Подобные документы

  • Решение квадратичных неравенств в школьном курсе. Функциональный метод решения линейных, квадратичных, логарифмических, иррациональных и показательных неравенств. Некоторые лжепреобразования. Применение в математике правила возведения в квадрат.

    дипломная работа, добавлен 08.10.2017

  • Общая характеристика основных функций уравнения. Знакомство с графическим методом решения трансцендентных уравнений, анализ особенностей. График функции как множество всех точек координатной плоскости, абсциссы которых равны значениям аргументов.

    статья, добавлен 17.02.2019

  • Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.

    реферат, добавлен 31.03.2014

  • Анализ приемов нахождения решений дифференциальных уравнений через элементарные или специальные функции. Принцип сжатых отображений. Понятие метрического пространства. Решение задач методами последовательных приближений Пикара, Эйлера, Рунге-Кутта.

    дипломная работа, добавлен 21.09.2016

  • История возникновения математической константы, выражающей отношение длины окружности к ее диаметру, ее значение для науки. Понятие геометрического и классического периода вычисления числа пи. Сущность формул Ф. Виета, Д. Валлиса, Д. Мэчина и Л. Эйлера.

    презентация, добавлен 24.02.2015

  • Общая постановка задачи решения обыкновенных дифференциальных уравнений. Метод Адамса для решения систем обыкновенных дифференциальных уравнений. Анализ погрешности, основные достоинства и недостатки метода Адамса решения дифференциальных уравнений.

    курсовая работа, добавлен 11.06.2014

  • Алгоритм численного метода решения систем обыкновенных дифференциальных уравнений (задачи Коши). Применение метода Эйлера в алгоритме. Перечень основных положений предложенного метода решения систем ОДУ. Программа реализации алгоритма на языке Си.

    статья, добавлен 23.10.2010

  • Изучение основ теории решения изобретательских алгебраических задач, выявление их функций и областей применения. Рассмотрение примеров решения параметрических уравнений и неравенств алгебраическим, аналитическим и функционально-графическим способами.

    реферат, добавлен 02.02.2014

  • Определение уравнений Риккати и характеристика ряда его свойств. Анализ некоторых особенностей решения данного вида дифференциальных уравнений. Интегрируемость уравнений Риккати в конечном виде. Примеры уравнений Риккати, имеющих конечное решение.

    курсовая работа, добавлен 19.01.2016

  • Геометрия - наука, изучающая формы, размеры и взаимное расположение геометрических фигур. История возникновения и развития науки с древних времен и до наших дней. Особенности изучения геометрии в философских школах Древней Греции, выдающиеся ученые.

    реферат, добавлен 22.09.2011

  • Изучение биографии и вклада в науку Виктора Михайловича Глушкова - советского математика, кибернетика, члена многих академий наук и научных обществ мира, заслуженного деятеля науки УССР, вице-президента АН УССР. Первые электронно-вычислительные машины.

    презентация, добавлен 30.11.2016

  • История возникновения, сущность, основные понятия, виды, способы задания и характеристики вершин теории графов. Доказательство теоремы Эйлера об эйлеровых графах (критерия эйлеровости графа). Алгоритм решения задач изоморфизма. Понятие дерева и леса.

    лекция, добавлен 11.02.2010

  • Решение уравнений с использованием однотипных интервалов. Характеристика и определение вектор-функции пространства. Разбивка неособых частных неравенств на непересекающиеся классы. Построение множества, вычисление дискриминанта квадратного неравенства.

    лекция, добавлен 01.09.2017

  • Ознакомление с процессом приближенного решения с помощью степенных рядов. Рассмотрение численного решения методом Эйлера и Рунге-Кутты. Исследование порядка вычисления абсолютной и относительной погрешности. Изучение совместного графического решения.

    контрольная работа, добавлен 15.01.2018

  • Рассмотрение особенностей решения неравенств с модулем. Изображение на координатной плоскости множества решений неравенства. Закономерности построения графика параболы. Характеристика основных методов решения задач с заданными параметрами неравенств.

    учебное пособие, добавлен 10.04.2015

  • Рассмотрение современных учебников алгебры и начал математического анализа 9 класса. Рассмотрение основных видов системы уравнений и неравенств, содержащих параметр. Характеристика аналитического и графического методов решения задач с параметрами.

    дипломная работа, добавлен 09.08.2018

  • Изучение способов решения квадратного неравенства: аналитического и графического. Исследование неравенств с одной переменной. Рассмотрение особенностей неравенств, содержащих знак модуля. Определение количества целочисленных решений неравенства.

    презентация, добавлен 15.03.2015

  • Изложение свойств показательной и логарифмической функций; применение этих свойств в жизни; способы решения показательных и логарифмических уравнений и неравенств. Высказывания А. Эйнштейна и Д. Пойа о важности и вечности уравнений и решении задач.

    презентация, добавлен 07.05.2014

  • Методика составления и решения системы линейных алгебраических уравнений, их графическое изображение. Теорема Кронекера-Канелли о признаках совместимости системы и ее доказательство. Метод Крамера и матричный метод решения неоднородной системы уравнений.

    контрольная работа, добавлен 26.07.2009

  • История возникновения счета и чисел. Число, как основное понятие математики. Исследование множеств чисел с применением кругов Эйлера. Множество натуральных чисел и их свойства. Дроби в Древнем Египте. Четыре действия арифметики. Десятичные дроби.

    реферат, добавлен 21.03.2013

  • Разновидность комбинаторных задач, их характеристика и специфика. Этапы приближенного решения нелинейных уравнений, графическое и аналитическое отделение корней. Описание и отличительные черты методов решения нелинейных уравнений, их применение.

    курсовая работа, добавлен 14.03.2015

  • Основные понятия приближённых вычислений. Учёт погрешности в арифметических действиях. Применение модифицированного метода Ньютона для вычисления систем нелинейных уравнений. Сущность методики Эйлера-Коши с последовательной итерационной обработкой.

    учебное пособие, добавлен 14.01.2017

  • Решение дифференциального уравнения численным методом. Исправленный и модифицированный метод Эйлера. Значение метода Эйлера. Описание алгоритма главной программы. Сравнение результатов полученных при использовании программы, а также ручным способом.

    контрольная работа, добавлен 20.07.2012

  • История возникновения науки арифметики, ее процесс развития. Открытие несоизмеримых отрезков греческими математиками из школы Пифагора. Проблематика определения понятия функции. Процесс изучения тригонометрических и логарифмических функций в школе.

    курсовая работа, добавлен 29.10.2013

  • Рассмотрение применения математических методов в разных сферах человеческой деятельности. Описание зарождения математики и построения первых математических теорий. Анализ состояния науки в разные исторические периоды и вклада разных ученых в ее развитие.

    реферат, добавлен 25.09.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.