Решение матриц

Этапы нахождение определителя матрицы, минора и алгебраического дополнения к элементам матрицы. Особенности решение системы линейных алгебраических уравнений методами Крамера и Гаусса. Нахождение собственных чисел и собственных векторов матрицы.

Подобные документы

  • Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.

    курсовая работа, добавлен 31.12.2018

  • Матрицы и действия над ними. Система n линейных уравнений с n неизвестными. Правило Крамера. Использование метода Гаусса решения общей. Критерий совместности общей. Решение систем линейных уравнений на экзаменах в различных математических вузах.

    реферат, добавлен 02.02.2022

  • Определение минора k-го порядка матрицы. Использование методов окаймляющих миноров и элементарных преобразований для вычисления ее ранга. Линейная зависимость строк (столбцов) математических таблиц. Исследование систем линейных алгебраических уравнений.

    презентация, добавлен 29.08.2015

  • Вычисление неопределенных и определенных интегралов, предела функции по правилу Лопиталя. Составление уравнения касательной к кривой. Нахождение уравнения плоскости, проходящей через точки. Решение системы уравнений методами Гаусса и обратной матрицы.

    контрольная работа, добавлен 25.04.2017

  • Элементы и обозначение матриц. Свойства операции произведения матриц. Получение присоединенной матрицы путем замены каждого элемента матрицы на его алгебраическое дополнение. Использование метода обратной матрицы для решения систем линейных уравнений.

    презентация, добавлен 14.11.2014

  • Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.

    лекция, добавлен 18.04.2014

  • Алгебраические дополнения для определителей. Обзор алгоритма нахождения исходной матрицы. Изучение метода обратной матрицы при решении системы уравнений. Расчет длины отрезков, отсекаемых плоскостью от осей координат с помощью уравнения плоскости.

    контрольная работа, добавлен 04.09.2013

  • Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.

    контрольная работа, добавлен 24.12.2014

  • Определитель как одно из основных понятий линейной алгебры. Нахождение обратной матрицы. Коэффициенты при переменных и свободные членов. Методы Крамера и Гаусса. Отрезки, отсекаемые плоскостью на осях координат. Исследование функции и построение графика.

    контрольная работа, добавлен 08.10.2014

  • Вычисление определителя матрицы разложением. Решение системы уравнений методом Гаусса. Нахождение площади грани и длины высоты пирамиды. Свойства скалярного произведения. Каноническое уравнение высоты пирамиды. Уравнение медианы, опущенной из вершины.

    контрольная работа, добавлен 01.06.2017

  • Общий вид системы линейных алгебраических уравнений. Особенности квадратной системы линейных уравнений. Описание решения систем линейных уравнений методом вращений, рассмотрение теоремы Кронекера. Произведение матрицы элементарного вращения на вектор.

    контрольная работа, добавлен 12.03.2020

  • Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.

    контрольная работа, добавлен 22.08.2014

  • Матрицы и действия над ними (обратная матрица). Системы линейных уравнений. Система n линейных уравнений с n неизвестными. Правило Крамера. Метод Гаусса решения общей системы линейных уравнений. Критерий совместности общей системы линейных уравнений

    реферат, добавлен 26.02.2010

  • Понятие сингулярных чисел, проблема нахождения их собственных значений. Вычисление сингулярного разложения матрицы с использованием метода вращений Якоби. Разработка и тестирование на примерах программы для вычисления сингулярного разложения матриц.

    лабораторная работа, добавлен 23.11.2014

  • Теоретические аспекты понятия матрицы, правила основных операций над н6ими (сложения, умножения, умножения на число). Определитель в теории систем линейных уравнений, его вычисление и основные свойства. Решение систем линейных уравнений методом Крамера.

    реферат, добавлен 30.10.2010

  • Матрица и её основные свойства, ранг, определитель и способы его поиска, обратная матрица. Решение системы линейных уравнений по формулам Крамера. Использование матрицы в решении системы уравнений и определении длины вектора, поиск базисных решений.

    контрольная работа, добавлен 27.11.2015

  • Различные способы решения систем линейных уравнений для применения их на практике. Основные понятия матрицы и действия над ними. Метод Гаусса решения общей системы линейных уравнений. Правило Крамера, система n линейных уравнений с n неизвестными.

    реферат, добавлен 06.03.2010

  • Понятие, применение матрицы в построении экономическо-математических моделей. Системы линейных алгебраических уравнений, решение систем по формулам Крамера. Элементы матричного анализа и аналитической геометрии. Взаимное расположение прямых на плоскости.

    учебное пособие, добавлен 06.09.2017

  • Характеристика матрицы как прямоугольной таблицы чисел, содержащей m строк одинаковой длины (или n столбцов одинаковой длины). Операции над матрицами. Системы линейных алгебраических уравнений. Обратная матрица и ее применение к решению линейных систем.

    курсовая работа, добавлен 17.11.2019

  • Численное решение нелинейных уравнений. Методы деления отрезка пополам, Ньютона (метод касательных) и простой итерации. Решение систем линейных алгебраических уравнений. Методы Гаусса, обратной матрицы, прогонки, простой итерации (метод Якоби), Зейделя.

    методичка, добавлен 26.09.2016

  • Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.

    презентация, добавлен 30.10.2013

  • Основные определения матричного исчисления, свойства собственных значений. Преобразование подобия матриц. Матрица вращения, особенности метода Гивенса. Характеристический многочлен матрицы. Метод бисекций решения полной проблемы собственных значений.

    курсовая работа, добавлен 22.01.2016

  • Понятие и особенности перестановок чисел. Определение и свойства определителя. Свойства минора и алгебраического дополнения. Теорема разложения определителя по строке или столбцу. Примеры вычисления и разложения по первой строке определителей матриц.

    лекция, добавлен 24.11.2015

  • Решение систем линейных алгебраических уравнений. Вычисление обратной матрицы методом Гаусса. Основные методы решения нелинейных однородных (скалярных) уравнений. Построение интерполяционного полинома. Сущность аппроксимация методом наименьших квадратов.

    учебное пособие, добавлен 24.10.2012

  • Раскрытие неопределенности с помощью правила Лопиталя. Поиск производной от функции. Решение системы линейных уравнений методами Гаусса и Крамера. Расширенная матрица системы, уравнение прямой. Решение игры аналитическим и геометрическим способами.

    контрольная работа, добавлен 03.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.