Исследование метода обратного распространения ошибки для обучения нейронной сети
Разработка алгоритма и программирование вычислительного процесса двухслойной нейросети на языке С#. Исследование параметров обучения нейросети методом обратного распространения ошибки. Анализ количества шагов, скорости обучения и коэффициента сигмоида.
Подобные документы
Решение задачи обучения нейронной сети с помощью алгоритма обратного распространения на основе объема страховых сборов на данный отчетный период. Расчет количества нейронов в скрытом слое и количества скрытых слоев. Исследование структуры нейронной сети.
статья, добавлен 29.09.2012Пример работы алгоритма обратного распространения ошибки. Функция активации сигмоидного типа. Геометрическая интерпретация алгоритма обратного распространения. Анализ условий и предпосылок для успешного обобщения. Механизм контрольной кросс-проверки.
презентация, добавлен 16.10.2013Аналитический обзор существующих нейронных сетей: логистическая (сигмоидальная) функция, гиперболический тангенс, выпрямленная линейная функция. Анализ методов обучения: обратного распространения ошибки, упругого распространения, генетический алгоритм.
дипломная работа, добавлен 14.12.2019Задача определения оптимальной структуры нейросети. Зависимости величин ошибок обучения и обобщения (процент неправильно решенных примеров в соответствующей выборке) и индикаторов внутренних свойств нейросетей от числа нейронов в скрытом слое сети.
статья, добавлен 08.02.2013Исследование целевой функции в задачах обучения искусственных нейронных сетей. Сущность итерационного процесса корректировки весовых коэффициентов. Особенность зависимости ошибки учебы от количества эпох для гибридного метода и адаптивного алгоритма.
статья, добавлен 30.05.2017Характеристика многослойной структуры нейронных сетей. Алгоритм обучения однослойного перцептрона. Построение полного алгоритма нейронных сетей с помощью процедуры обратного распространения. Программирование и применение методов Randomize и Propagate.
реферат, добавлен 20.03.2009Фрагмент нейросети (входной и выходной слои). Простейшая линейная функция от двух входов. Трактовка работы сети для имитации прохождения по ней возбуждения, управления. Теорема о сходимости перцептрона. Метод обратного программного распространения ошибки.
презентация, добавлен 16.11.2014Особенности реализации алгоритма обучения, временно прекращающего адаптацию наиболее значимых синапсов при обучении нейросети обратного распространения. Показатели обобщающей способности и большей устойчивости полученных нейросетей к отказам элементов.
статья, добавлен 08.02.2013Особенности использования скоростного метода обучения многослойного персептрона, который отличается высокой скоростью обучения. Анализ результатов сравнения скоростного метода обучения со стандартными методами. Метод обратного распространения ошибки.
статья, добавлен 27.04.2017Рассмотрение положений теории нейронных сетей, анализ разнообразия их архитектур. Методы и алгоритмы предварительной обработки данных. Моделирование структуры нейросети. Разработка алгоритмов обучения нейронной сети для уменьшения ошибки тестирования.
дипломная работа, добавлен 30.08.2016Сравнительный анализ алгоритмов обучения нейро-нечеткой системы с функциями принадлежности с применением метода обратного распространения ошибки и гибридного метода. Решение задачи управления биотехнологическими процессами микробиологических производств.
статья, добавлен 26.05.2017- 12. Генератор псевдослучайных последовательностей на основе модифицированной рекуррентной нейронной сети
Архитектура и функционирование модифицированной рекуррентной нейронной сети. Метод генерации псевдослучайных последовательностей. Методика обучения модифицированной рекуррентной нейронной сети на основе алгоритма обратного распространения ошибок.
статья, добавлен 19.06.2018 Изучение вычислительно экономичного, не зависящего от вида целевой функции и структуры нейросети, решения для определения значимости элементов и сигналов нейросети. Оценка первого порядка изменения выходных сигналов нейросети, как показатель значимости.
статья, добавлен 08.02.2013Рассматриваются алгоритмы обучения нейронной сети: градиентный спуск с постоянным шагом и метод сопряженных градиентов (алгоритм Флетчера-Ривса). Расчет значения минимизируемой целевой функции ошибки полученной на тестовой выборке после обучения.
статья, добавлен 29.04.2018Основные виды и типы нейронных сетей. Области применения нейронных сетей. Характеристика искусственной нейронной сети Gamma AI. Анализ описания алгоритма работы в нейросети гамма. Определение нейронной сети для создания озвучки из текста Narakeet.
контрольная работа, добавлен 18.06.2024Разработка нейронной сети для распознавания изображений. Рассмотрение примеров применения машинного обучения в различных областях. Фреймворки и библиотеки для упрощения разработки ботов для Telegram. Создание приложения при помощи нейросети на Python.
отчет по практике, добавлен 20.12.2023- 17. Применение многослойных радиально-базисных нейронных сетей для верификации реляционных баз данных
Разработка способов обеспечения достоверности информации баз данных. Описание метода определения достоверности вводимого кортежа. Параметры и характеристика нейронной сети Кохонена. Обучение радиально-базисной сети путём обратного распространения ошибки.
статья, добавлен 29.05.2017 Анализ принципов обучения нейронных сетей, их классификация. Описание алгоритмов обучения искусственных нейронных сетей: правило Хебба и Кохонена, дельта-правило, обратного распространения ошибки, стохастические алгоритмы, машины Больцмана и Коши.
лекция, добавлен 21.09.2017Изучение подходов к нормализации обучающего множества нейронной сети. Анализ существующих методов обучения нейронной сети Кохонена, их основные в преимущества и недостатки. Разработка нового конструктивного метода обучения на основе нейтронной сети.
статья, добавлен 26.04.2019Характеристика алгоритма. Сетевые конфигурации. Многослойная сеть, которая может обучаться с помощью процедуры обратного распространения. Этапы выполнения алгоритма. Программа создания однонаправленной сети. Статистика использования других алгоритмов.
статья, добавлен 15.08.2020Обзор принципов организации и функционирования биологических нейронных сетей. Расширенная модель искусственного нейрона. Обучение нейронной сети. Алгоритм обратного распространения ошибки. Определение входного сигнала нейрона. Карты признаков Кохонена.
курсовая работа, добавлен 04.12.2012Многослойные нейронные сети и алгоритмы их обучения. Персептрон, системы типа Адалайн, алгоритм обратного распространения ошибки. Нечеткие множества и нечеткий вывод. Генетические алгоритмы и традиционные методы оптимизации. Модули нейронного управления.
книга, добавлен 18.01.2011Функционирование нейронных сетей. Функции активации. Топология элементарного однонаправленного персептрона. Трехслойный персептрон. Процедура построения персептрона. Алгоритм обратного распространения ошибки. Топология элементарной ВР-нейронной сети.
презентация, добавлен 16.10.2013Проблема преобразования данных без использования конкретной формулы. Нейронные сети - системы искусственного интеллекта. Способность системы самостоятельно обучаться и действовать на основании предыдущего опыта, с каждым разом делая всё меньше ошибок.
статья, добавлен 15.02.2019Свойства и структура нейронных сетей, их применение в сфере компьютерных технологий. Поиск путей увеличения скорости протекания процесса обучения. Анализ зависимость ошибки обучения от сложности структуры персептрона и количества нейронов в скрытом слое.
статья, добавлен 03.02.2021