Теория вероятности
Определение и распределение дискретной случайной величины при множестве возможных значений. Свойства геометрической функции распределения. Формульное выражение математического ожидания. Графики функции и плотности распределения непрерывной величины.
Подобные документы
Условные законы распределения непрерывных случайных величин, имеющих непрерывное совместное распределение. Условное математическое ожидание случайной величины. Сущность корреляции. Свойства ковариации. Нормальный закон распределения на плоскости.
реферат, добавлен 26.01.2012История понятия случайной величины. Закон больших чисел, расширение проблематики, связанной с ним в работах ученых. Введение математического ожидания и дисперсии в теорию вероятностей. Заложение основ теории случайных процессов на базе физических задач.
реферат, добавлен 29.12.2020Особенности определения математического ожидания, дисперсии и среднего квадратического отклонения случайной величины. Рассмотрение локальной теоремы Лапласа. Методика определение вероятности события. Основы построения гистограммы и полигона частот.
задача, добавлен 09.01.2014Статистическая обработка выборки реализаций случайной величины, распределенной по геометрическому закону. Построение гистограммы статистического распределения и полигона распределения. Оценка параметров распределения методом наибольшего правдоподобия.
контрольная работа, добавлен 07.08.2013- 105. Теория вероятностей
Исторические сведения о возникновении и развитии теории вероятностей. Определение случайного события и условные вероятности. Определение случайной величины и ее числовые характеристики, понятие математического ожидания. Примеры дискретных распределений.
курс лекций, добавлен 08.04.2015 - 106. Основы статистики
Элементы теории вероятностей. Математическое ожидание, дисперсия, корреляция конечной случайной величины. Свойства функции распределения. Распределение Пуассона и его сущность. Способы формирования выборочной совокупности. Схема проверки гипотез.
презентация, добавлен 11.12.2014 Расчет числовых характеристик биноминального распределения. Распределение случайной величины по закону Пуассона. Сопоставление дисперсии случайно величины, распределенной по закону Пуассона, с математическим ожиданием. Нормальный закон распределения.
лекция, добавлен 18.03.2014Определение математического ожидания, дисперсии, функции распределения, вероятности событий, ошибок измерений. Построение эмпирической функции распределения. Статистическая проверка гипотезы о нормальном распределении. Оценка коэффициента корреляции.
контрольная работа, добавлен 13.05.2014Описание процесса построения кривой функции распределения, влияние изменения параметров кривой на форму кривой плотности вероятности. Последствия увеличения среднего квадратического отклонения, сущность и особенности нормального распределения Гаусса.
лабораторная работа, добавлен 08.11.2015Первое доказательство частного случая центральной предельной теоремы. Определение нормального распределения. Свойства нормальной кривой Гаусса. Определение экстремума функции. График функции плотности распределения. Максимальная дифференциальная энтропия.
реферат, добавлен 05.03.2020- 111. Теория вероятностей
Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.
курс лекций, добавлен 24.04.2015 Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.
контрольная работа, добавлен 05.11.2016- 113. Теория вероятностей
Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014 Построение гистограммы относительных частот. Минимальный и максимальный элементы выборки. Оценка математического ожидания (выборочного среднего), дисперсии, моды. Характеристика произвольной случайной величины. Эмпирическая функция распределения.
лабораторная работа, добавлен 27.03.2022Изучение решения задач по математической статистике и теории вероятностей с помощью формулы Бейеса и Бернулли. Определение константы, вычисление математического ожидания и дисперсии величины X, а также расчет и построение графика функции распределения.
контрольная работа, добавлен 19.03.2014- 116. Случайные величины
Сумма и произведение событий. Закон распределения случайных величин и их числовые характеристики, формула полной вероятности и теорема гипотез. Плотность и свойства функции распределения. Закон распределения Пуасона и теорема о числовых характеристиках.
шпаргалка, добавлен 14.11.2010 Методы обработки экспериментальных данных. Случайные величины и законы распределения. Основные свойства плотности распределения. Числовые характеристики случайных величин. Кривые распределения с различной степенью крутости. Виды асимметрии распределений.
курсовая работа, добавлен 11.11.2015Случайные величины. Математическое ожидание дискретной величины. Понятие дисперсии. Характеристика нормального распределения. Его графическое представление. Распределения, отличные от нормального. Эмпирические выбросы. Показатели асимметрии и эксцесса.
методичка, добавлен 24.07.2014Повторения Бернулли как повторные независимые испытания, этапы их реализации и предъявляемые требования, изучение примеров. Формула Пуассона, ее выведение. Понятие и содержание случайной величины. Числовые характеристики дискретной случайной величины.
контрольная работа, добавлен 20.02.2011- 120. Теория вероятностей
Три типа событий теории вероятностей, классическая вероятностная модель. Закон распределения случайной величины, понятие математического ожидания. Критерии для принятия решений в условиях неопределенности. Решение задач графоаналитическим методом.
контрольная работа, добавлен 29.11.2014 Формулы Бейеса и Бернулли. Понятие непрерывной случайной величины. Биноминальное распределение и распределение Пуассона. Числовые характеристики дискретных случайных величин. Условные законы распределения, линейная регрессия. Закон больших чисел.
курс лекций, добавлен 18.10.2017- 122. Теория вероятностей
Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.
методичка, добавлен 05.09.2012 Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.
задача, добавлен 24.08.2015Расчет нахождения точечных оценок распределения на основании выборок — ряда значений хi, принимаемых случайной величиной х в n независимых опытах. Оценка среднего квадратического отклонения случайной величины х как корня квадратного из дисперсии.
контрольная работа, добавлен 20.02.2014Предмет и основные методы математической статистики. Ее основные понятия. Эмпирическая функция распределения и гистограмма. Основные понятия выборочного метода. Закон распределения дискретной случайной величины. Понятие выборочного распределения.
реферат, добавлен 26.03.2010