Элементы линейной алгебры

Основные понятия матрицы и ее определителей. Использование теорем замещения и аннулирования в доказательстве свойств определителей. Алгебраическое дополнение и минор элемента. Операции вычисления между элементами строк и столбцов квадратной матрицы.

Подобные документы

  • Исследование вопросов линейной алгебры и физики для активного и неформального усвоения: основные понятия и теоремы, формулы, решение практических задач, упражнения для самостоятельной работы, для решения на практических занятиях и для домашних заданий.

    краткое изложение, добавлен 25.03.2011

  • Изучение метода последовательного исключения переменных. Элементарные преобразования строк расширенной матрицы. Доказательство теоремы Крамера. Нахождение обратной матрицы методом Гаусса. Определение числовых значений главных неизвестных через свободные.

    лекция, добавлен 29.09.2013

  • Решение линейного алгебраического уравнения методом Гаусса, Крамера и матричным способом. Получение из исходной матрицы путем замены ее элементов алгебраическими дополнениями. Определение матрицы квадратной системы по формуле Крамера и решение уравнения.

    задача, добавлен 05.09.2016

  • Определение булевой алгебры (алгебры логики, алгебры суждений) – раздела математики, в котором изучаются логические операции над высказываниями. Характеристика логических операций: отрицания, конъюнкции, дизъюнкции, импликации, а также эквиваленции.

    презентация, добавлен 06.02.2020

  • Изложение методов обработки элементов матрицы, расположенных на главной диагонали, выше и ниже главной диагонали, на побочной диагонали, выше и ниже побочной диагонали; заполнения элементов квадратного массива; упорядочения элементов и строк матрицы.

    презентация, добавлен 07.05.2014

  • Изучение основных матриц графов и их теорем. Описание порядка построения матрицы по графическому рисунку графа и графов по заданной матрице. Характеристика метрических характеристик графов, связанных с матрицами. Нахождение путей графов по матрице.

    курсовая работа, добавлен 13.09.2012

  • Понятие математических матриц, источники их формирования и развития в науке. Основные элементы и их взаимодействие. Описание действий с таблицами: сложение, вычитание, умножение между собой и на число. Рассмотрение свойств транспортированных матриц.

    презентация, добавлен 23.12.2013

  • Формульное выражение метода вычитания и умножения матриц на число. Возведение математического объекта в степень. Транспортирование единичных детерминант на число. Нахождение множественных характеристик квадратной матрицы второго и третьего порядков.

    презентация, добавлен 15.03.2014

  • Определение линейной алгебры и ее основных свойств. Описание формирования базисов из логических переменных. Характеристика процесса логического синтеза двузначных и многозначных цифровых структур в линейной алгебре. Пример разложения логических функций.

    статья, добавлен 29.07.2017

  • Аксиомы линейного пространства. Понятие вектора как элемента множества. Определение линейной комбинации векторов и ее выражение. Базис линейного пространства. Равенство ранга матрицы для независимых векторов. Пример решения линейной зависимости.

    лекция, добавлен 26.01.2014

  • Матрицы, основные операции над ними. Определители и их свойства. Системы линейных алгебраических уравнений. Решение систем линейных алгебраических уравнений по формулам Крамера и методом Гаусса. Собственные значения и собственные векторы матрицы.

    методичка, добавлен 29.12.2015

  • Матрица и определители. Применение способа разложения по элементам столбца (строчки). Алгебраические дополнение элемента матрицы. Решение системы линейных уравнений. Составление общего уравнения плоскости, проходящей через точку перпендикулярно вектору.

    контрольная работа, добавлен 20.03.2017

  • Анализ определений внутренних и внешних устойчивых множеств на графе с определением его ядра. Обзор построения нелокальных правил коллективных решений. Нахождение значений векторов турнирной матрицы, методом индивидуальных порядков линейной алгебры.

    лекция, добавлен 29.09.2013

  • Виды блочных матриц и операции над ними, их отличие от обычных. Сложение, умножение, кронекеровские произведение и сумма. Применение формулы Фробениуса. Алгоритм нахождения полуобратной матрицы. Нахождение обратной к матрице и информация о "возмущении".

    курсовая работа, добавлен 18.05.2013

  • Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.

    курсовая работа, добавлен 11.01.2015

  • Элементарные преобразования многочленной матрицы. Наибольшие общие делители миноров. Деление матричных многочленов, обобщенная теорема Безу. Характеристический и минимальный многочлен матрицы. Представление значений функций многочленами, степенные ряды.

    курсовая работа, добавлен 23.04.2011

  • Основные соотношения метода резольвенты. Задача вычисления ИКФ определённых характеристическим многочленом гамильтоновой матрицы. Исследование развития идей эффективного вычисления ИКФ на основе частотного метода. Тестирование на САУ большой размерности.

    статья, добавлен 09.02.2013

  • Теорема о существовании и единственности обратной матрицы. Операция обращения матрицы, ее свойства. Вычисление обратной матрицы с помощью алгебраических дополнений или методом Гаусса (используя преобразования Жордана). Решение матричных уравнений.

    лекция, добавлен 11.12.2014

  • Особенности расчета матрицы и обратной матрицы. Алгоритм математического решения системы линейных уравнений с тремя неизвестными. Построение треугольника, вершины которого находятся в заданных точках. Расчет ребер, площадь грани, объема пирамиды.

    контрольная работа, добавлен 24.10.2019

  • Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.

    реферат, добавлен 07.04.2011

  • Матрицы и операции над ними. Определители и их свойства. Обратная матрица. Системы линейных алгебраических уравнений и их решение по формулам Крамера и методом Гаусса. Теорема Кронекера-Капелли. Собственные значения и собственные векторы матрицы.

    учебное пособие, добавлен 17.04.2013

  • Нахождение косинуса угла между векторами при заданных условиях. Схематический чертеж перпендикулярных плоскостей. Приведение к каноническому виду уравнения линий второго порядка. Решение системы линейных уравнений матричным методом и методом Гаусса.

    контрольная работа, добавлен 11.06.2016

  • Теоретические основы изучения функциональной линии в курсе алгебры основной школы. Понятие функции, способы её задания и исследования. Изображение замкнутых кривых на координатной плоскости. Методика изучения линейной, квадратной и кубической функции.

    методичка, добавлен 30.01.2016

  • Производственная сфера хозяйства и использование математических методов для оценки её эффективности. Межотраслевой баланс производства и применение линейной алгебры в экономике. Графическое отображение закономерностей и расчётф зависимости явлений.

    контрольная работа, добавлен 20.06.2012

  • Представление синусоидального тока комплексными величинами. Матричная алгебра, предмет и содержание ее исследований, современные тенденции и достижения. Понятие и характерные свойства матрицы размера. Вычисление обратных матриц различными способами.

    реферат, добавлен 15.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.