Матричный анализ линейных систем
Векторные пространства и линейные преобразования. Изучение основных типов матриц. Простейшие операции с матрицами. Устойчивость систем управления. Определение необходимого условия устойчивости. Сложение, вычитание и умножение транспонированных матриц.
Подобные документы
Решение систем линейных алгебраических уравнений с положительно определенными симметричными (несимметричными) плохо обусловленными матрицами модифицированным методом регуляризации. Возможность существенного улучшения решения СЛАУ с матрицами Гильберта.
статья, добавлен 29.04.2019Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.
практическая работа, добавлен 12.12.2019Характеристика сущности и свойств матрицы. Анализ специфики ортогональных и унитарных матриц. Изучение детерминант матриц и их свойств. Примеры нахождения определителей N-го порядка. Примеры решения задач на определение видов и детерминант матриц.
курсовая работа, добавлен 31.10.2017- 54. Матричный анализ
Алгоритм определения функции от матриц, их значения на спектре, свойства и доказательства. Построение интерполяционного многочлена Ланганжа-Сильвестра. Теорема Фробениуса-Перона. Анализ эрмитовых и квадратичных матриц. Спектральное разложение функции.
реферат, добавлен 30.10.2010 Определение системы линейных уравнений. Матричный метод решения систем линейных уравнений. Правило Крамера, метод Гаусса. Основные действия над матрицами. Функции, ее свойства, описание множеств. Пределы и непрерывность, свойства интегралов и производных.
курс лекций, добавлен 24.04.2009Вычисление определителя матрицы. Нахождение обратной матрицы, выполнение проверки. Решение системы линейных уравнений методом обратных матриц и методом Гаусса. Приведение расширенной матрицы к треугольному виду. Расчет координат нормального вектора.
контрольная работа, добавлен 11.12.2012Определение матрицы и арифметические операции над матрицами. Матричное представление линейных уравнений. Используемые инструменты MathCAD для вычислений с матрицами. Формирование уравнений цепи на основе теории графов. Топологические матрицы графа.
курсовая работа, добавлен 28.04.2015Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.
лекция, добавлен 18.03.2015Понятие и общая характеристика, свойства и особенности матриц, определителей, систем линейных алгебраических уравнений и методы решения. Линейное пространство и преобразования в нем. Основы аналитической геометрии. Функции и предел их последовательности.
учебное пособие, добавлен 13.03.2011Определение и особенности нелинейных систем. Методы фазовых портретов и гармонической линеаризации. Исследование вибрационной помехоустойчивости систем управления. Устойчивость нелинейных систем, метод Ляпунова. Критерий абсолютной устойчивости Попова.
реферат, добавлен 22.07.2015Особенности записи обыкновенных дробей в древнем Египте. Сложение и вычитание обыкновенных дробей с разными знаменателями. Приведение дробей к одинаковому знаменателю, используя основное свойство дроби. Изучение правил сложения и вычитания дробей.
презентация, добавлен 08.11.2015Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.
презентация, добавлен 30.10.2013Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.
презентация, добавлен 23.10.2020Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Линейные (векторные) пространства. Пространства числовых последовательностей. Топологические векторные пространства, обладающие базисным свойством. Существование базиса в топологическом векторном пространстве. Единственность базиса, метод декомпозиции.
курс лекций, добавлен 06.08.2015Определители матриц. Векторное произведение векторов, его свойства. Линейные преобразования пространства. Прямая в пространстве. Виды уравнений прямой. Гипербола и парабола. Конусы и цилиндры. Непрерывные функции и их свойства. Производная и дифференциал.
шпаргалка, добавлен 11.05.2010Анализ вопросов, связанных с приведением бесконечных матриц с суммируемыми диагоналями к диагональному или блочно-диагональному виду с помощью преобразования подобия. Характеристика условий, при которых это возможно. Оценка собственных значений матрицы.
статья, добавлен 01.02.2019Основные операции над матрицами и их свойства. Определитель квадратной матрицы. Транспонирование – перемена ролями строк и столбцов матрицы. Подчинение следующим законам: коммутативному и ассоциативному. Понятие определителей и их определение символами.
реферат, добавлен 24.03.2015Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову. Их геометрическая интерпретация. Устойчивость решения автономной системы и линейных дифференциальных уравнений с постоянными коэффициентами. Простейшие типы точек покоя.
контрольная работа, добавлен 22.01.2016Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.
курс лекций, добавлен 20.09.2011Система линейных алгебраических уравнений: однородная, квадратная, совместная и несовместная. Матричная форма системы линейных уравнений. Эквивалентные системы линейных уравнений. Элементарные преобразования матрицы. Особенности теоремы Кронекера-Капелли.
контрольная работа, добавлен 24.12.2014Рассмотрение необходимого и достаточного условия сходимости. Характеристика матричной записи методов Якоби и Зейделя. Представление итерационного процесса в матричном виде. Анализ итерационных методов решения систем линейных алгебраических решений.
презентация, добавлен 30.10.2013- 73. Алгебра
Линейные уравнения и операции над матрицами. Обратная матрица и матричные уравнения. Линейные пространства, ранг матрицы и его приложения. Действия с комплексными числами. Группы, подгруппы, порядки элементов. Многочлены от одной и нескольких переменных.
курс лекций, добавлен 21.11.2011 Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.
курсовая работа, добавлен 11.01.2015Итерационные методы решения линейных алгебраических уравнений. Подчиненные и согласованные матричные нормы. Метод последовательной верхней релаксации. Ассимитотическая скорость сходимости. Обусловленность матриц и систем линейных алгебраических уравнений.
курсовая работа, добавлен 15.08.2017