Построение множественного уравнения регрессии

Установление мультиколлинеарности факторов. Уравнение множественной регрессии в линейной форме с полным набором факторов. Статистическая значимость уравнения и его параметров с помощью критериев Фишера и Стьюдента. Расчет коэффициентов эластичности.

Подобные документы

  • Построение однофакторной модели регрессии. Анализ влияния фактора на зависимую переменную по модели с помощью коэффициентов детерминации, множественной корреляции, частных коэффициентов эластичности, а также степени линейной связи между переменными.

    контрольная работа, добавлен 27.04.2011

  • Зависимость индекса человеческого развития от валового накопления и суточной калорийности питания населения. Расчет парных коэффициентов корреляции с помощью средних квадратических отклонений и показателей. Построение однофакторных уравнений регрессии.

    контрольная работа, добавлен 13.01.2018

  • Определение корреляционной зависимости между величинами. Характеристика значимости нелинейной корреляции для множественного уравнения парной регрессии. Оценка качества модели функции регрессии и её параметров. Изучение методов наименьших квадратов.

    курсовая работа, добавлен 26.04.2013

  • Основная цель множественной регрессии, используемой в решении проблем спроса, изучении доходности акций и функции издержек производства. Условия включения факторов при построении множественной регрессии. Механизм действия их мультиколлинеарности.

    презентация, добавлен 05.10.2015

  • Нормальная линейная модель парной регрессии. Альтернативный метод нахождения параметров уравнения парной регрессии, построение точечного и интервального прогноза. Классический, обобщенный и доступный метод наименьших квадратов, программная реализация.

    курсовая работа, добавлен 17.04.2010

  • Порядок вычисления параметров и построения поля корреляции и эмпирической линии регрессии. Расчет значимости коэффициентов регрессии с помощью t-статистики Стьюдента, определение доверительных интервалов, коэффициентов детерминации и корреляции.

    контрольная работа, добавлен 27.09.2011

  • Определение параметров линейного уравнения множественной регрессии. Характеристика коэффициентов парной, частной и многократной корреляции. Нахождение скорректированного показателя многочисленной детерминации. Особенность применения критерия Фишера.

    задача, добавлен 14.05.2016

  • Построение модели парной линейной регрессии, описывающей зависимость среднедушевых денежных расходов за месяц от среднемесячной начисленной заработной платы на человека. Расчет коэффициентов корреляции и детерминации. Анализ средней ошибки аппроксимации.

    контрольная работа, добавлен 19.05.2012

  • Расчет матрицы парных коэффициентов корреляции. Оценка параметров линейной и парной модели с полным перечнем факторов, влияние факторных переменных на Y по коэффициентам регрессии. Тестирование предпосылок теоремы Гаусса-Маркова для двух моделей.

    контрольная работа, добавлен 18.04.2018

  • Расчет линейного уравнения множественной регрессии; его оценка на основе коэффициента детерминации и общего критерия Фишера. Расчет параметров линейного, экспоненциального, степенного, гиперболического трендов по данным о средних потребительских ценах РФ.

    контрольная работа, добавлен 01.12.2013

  • Расчет линейного коэффициента парной корреляции и его статистической значимости. Вычисление качества уравнения регрессии при помощи коэффициента детерминации. Оценка статистической надежности результатов регрессионного моделирования критерием Фишера.

    контрольная работа, добавлен 26.03.2014

  • Корреляционное поле между объемом предложения блага и его ценой. Расчет коэффициентов линейного уравнения множественной регрессии и пояснение экономического смысла его параметров. Коэффициенты автокорреляции, наличие сезонных колебаний во временном ряде.

    практическая работа, добавлен 16.12.2014

  • Уравнение зависимости объема предложения блага от цены этого блага и зарплаты сотрудников фирмы. Линейная модель множественной регрессии данных, расчёт автокорреляции остатков с помощью теста Дарбина-Уотсона. Уравнение регрессии с фиктивными переменными.

    контрольная работа, добавлен 27.04.2013

  • Построение поля и расчёт линейного коэффициента корреляции. Построение линейного уравнения множественной регрессии и расчёт коэффициента множественной детерминации. Определение коэффициента автокорреляции первого порядка и построение уравнения тренда.

    контрольная работа, добавлен 04.02.2013

  • Анализ графиков исходных данных и корреляционной связи. Парный коэффициент корреляции между всеми парами факторов. Регрессионные модели, значимость параметров уравнений, коэффициенты детерминации. Устранение мультиколлинеарности, регрессионные уравнения.

    контрольная работа, добавлен 30.10.2014

  • Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.

    лабораторная работа, добавлен 05.09.2013

  • Основные этапы построения эконометрической модели. Оценка параметров линейной парной регрессии и нелинейных моделей. Отбор факторов при построении множественной регрессии. Моделирование одномерных временных рядов и прогнозирование. Модели авторегрессии.

    курс лекций, добавлен 16.05.2016

  • Параметры уравнения линейной регрессии, экономическая интерпретация коэффициента регрессии. Остаточная сумма квадратов. Проверка независимости остатков с помощью критерия Дарбина-Уотсона. Вычисление коэффициента детерминации. Построение степенной модели.

    контрольная работа, добавлен 23.11.2011

  • Оценка статистической значимости параметров регрессии. Прогнозирование чистого дохода и расчет доверительного интервала для коэффициентов регрессии и математического ожидания. Вычисление коэффициента детерминации, анализ наличия автокорреляции остатков.

    контрольная работа, добавлен 20.05.2012

  • Обозначение факторов, влияющих на прибыль. Рассмотрение факторов, влияющих на результативный признак с помощью коэффициентов парной корреляции. Определение и устранение мультиколлинеарности. Оценка значимости факторов по коэффициенту эластичности.

    курсовая работа, добавлен 14.10.2024

  • Суть модели Линтнера для коррекции размера дивидендов. Построение корреляционного поля для страховых резервов и годовой прибыли. Оценка качества уравнения простой регрессии с помощью коэффициента детерминации и критерия Фишера. Расчет критерия Ирвина.

    контрольная работа, добавлен 25.06.2019

  • Построение поля корреляции, формулирование гипотезы о форме связи. Расчет параметров уровней линейной парной регрессии. Оценка тесноты связи с помощью показателя линейной парной корреляции. Анализ качества уравнений с помощью средней ошибки аппроксимации.

    контрольная работа, добавлен 10.10.2016

  • Оценка параметров уравнения линейной регрессии по методу наименьших квадратов. Определение выборочного коэффициента корреляции. Частичная как вид мультиколлинеарности, при которой факторные переменные связаны некоторой стохастической зависимостью.

    контрольная работа, добавлен 05.02.2016

  • Показательный тренд. Построение регрессии. Дисперсионный анализ для линейной регрессии. Доверительные интервалы для оцененных параметров. Критерий Фишера значимости всей регрессии. Колеблемость признака. Моделирование сезонности ВВП. Индексный анализ.

    курсовая работа, добавлен 21.08.2008

  • Определение линейного коэффициента парной корреляции, уравнение линейной регрессии. Построение степенной модели путем логарифмирования частей уравнения. Построение гиперболической модели, коэффициент детерминации и средняя относительная ошибка.

    контрольная работа, добавлен 10.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.