Особые точки плоских кривых
Исследования локальных свойств плоской кривой. Предельное положение секущей, когда две общие с кривой точки сечения, стремясь друг к другу, совпадут. Применение приема проведения касательной к кривой из точки, заданной вне кривой с помощью кривой ошибок.
Подобные документы
Точная формула провисающей цепочки Галилея. Разгадка секрета цепной линии: график показательной функции. Связь между кривой и формой висящей цепочки: поиск уравнения линии. Подобие цепных линий, определение коэффициента подобия в преобразовании кривой.
реферат, добавлен 09.11.2010Параллельный перенос системы координат. Общее уравнение кривой второго порядка. График квадратного трехчлена. Вычисление линейного преобразования, заданного матрицей. Установление связи между декартовыми и полярными координатами точки, примеры расчета.
лекция, добавлен 10.07.2015Нахождение транспонированной матрицы, приведение её к ступенчатому виду элементарными преобразованиями. Составление уравнения касательной к заданной кривой и перпендикулярной прямой. Характеристика заданной функции, схематичное построение её графика.
контрольная работа, добавлен 18.04.2012Графический метод определения локальных характеристик кривых поверхностей сложной геометрической формы, заданных двумя своими изображениями на проекционном чертеже. Определение главных радиусов кривизны поверхности при помощи трех нормальных сечений.
статья, добавлен 30.07.2017Основная задача дифференциального исчисления. Нахождение углового коэффициента касательной к графику кривой. Максимумы и минимумы. Формулы нахождения производных. Линейные аппроксимации. Изучении площадей криволинейных плоских фигур. Частные производные.
лекция, добавлен 21.04.2010Особенности построения интегральной кривой дифференциального уравнения первого порядка методом изоклин. Методы решения физической задачи с его помощью. Нахождение закона движения материальной точки с помощью дифференциального уравнения второго порядка.
курсовая работа, добавлен 10.01.2012Рассмотрение задач, приводящих к понятию производной. Механический и геометрический смысл производной. Уравнение касательной и нормали к плоской кривой. Производные тригонометрической, логарифмической, степенной, сложной функций, высших порядков.
шпаргалка, добавлен 28.05.2015Состояния равновесия, расположенные на кривой второго порядка, являющейся эллипсом или гиперболой. Изоклина бесконечности или нуля системы. Определение индекса Пуанкаре. Точка возврата кривой. Мнимые и действительные корни характеристического уравнения.
лекция, добавлен 29.07.2013Общие сведения о поверхностях. Математическое обоснование плоских кривых линий. Поверхности вращения линейчатые и нелинейчатые. Поверхности с плоскостью параллелизма. Пространственные кривые линии. Конструирование поверхностей различных технических форм.
реферат, добавлен 12.03.2010Аналитическое и практическое построение эволюты и эвольвенты некоторых кривых. Применение эвольвенты окружности в технике для профилирования зубчатых зацеплений. Кривизна плоской кривой, вычисление кривизны. Связь эволюты и эвольвенты, их свойства.
курсовая работа, добавлен 06.09.2010Особенность определения годографа вектора-функции. Характеристика нахождения выражения дифференциала дуги. Вычисление кривизны линии, заданной параметрически и уравнением в полярных координатах. Изучение эвольвентного зацепления математиком Л. Эилером.
лекция, добавлен 28.01.2016Разрешение системы уравнений методом Крамера. Нахождение по координатам вершин треугольника АВС. Определение типа кривой второго порядка и ее основных геометрических характеристик. Формулирование и решение уравнения прямой; проходящей через две точки.
контрольная работа, добавлен 14.06.2015Применение метода конечных элементов для анализа прочности инструментов. Изучение параметрического моделирования кривых непосредственно в среде разработки Pro/ENGINEER. Использование эвольвентной кривой. Описание и создание окончательного профиля зуба.
статья, добавлен 30.10.2016Уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы как частные случаи уравнения. Уравнение окружности в полярных координатах. Каноническое уравнение эллипса. Вывод канонического уравнения гиперболы, ее эксцентриситет.
реферат, добавлен 25.05.2018Свойства интеграла ФКП. Вычисление криволинейного интеграла от функции действительного переменного. Выделение в подынтегральной функции действительных и мнимых частей. Уравнение отрезка в параметрическом виде. Граничные точки кривой на плоскости.
презентация, добавлен 17.09.2013История открытия общего метода для построения касательной в любой точке кривой. Анализ первой печатной работы Г. Лейбница по дифференциальному исчислению. Дифференциал как бесконечно малое приращение. Определение понятия правой и левой производных.
презентация, добавлен 25.11.2015Исследование перехода от алгебраической к канонической форме записи при помощи инвариантов, параллельного переноса, поворота и алгебраических преобразований. Построение кривой в канонической и общей системах координат. Определение сечения поверхности.
курсовая работа, добавлен 11.11.2010Понятие алгебраической кривой второго порядка. Окружность – множество, состоящее из всех точек плоскости, находящихся на равном расстоянии от фиксированной точки. Определение окружности для вывода ее уравнения. Фокусы эллипса и эксцентриситет эллипса.
контрольная работа, добавлен 09.12.2016Актуальность применения определенного интеграла и его приложений, использование в математике, физике, механике. Решение дифференциальных уравнений практического содержания. Статический момент и координаты центра тяжести плоской кривой, плоской фигуры.
курсовая работа, добавлен 18.03.2015Понятие криволинейного интеграла, его функции и свойства. Три интегральных суммы криволинейного интеграла первого и второго рода, их взаимосвязь. Вычисление перемещения материальной точки вдоль кривой. Теорема существования криволинейного интеграла.
реферат, добавлен 20.10.2014- 46. Задача о жуках
Использование формулы Эйлера для плоской сети в задаче о механических жуках, характеристика их свойств. Определение гладкой кривой линии без точек возврата в математике. Доказательство формулы канадского математика Хонсбергера из университета "Ватерлоо".
статья, добавлен 04.05.2012 - 47. Тройной интеграл
Сферические координаты точки в пространстве. Криволинейный интеграл по длине дуги. Формулы связи между декартовыми и сферическими данными. Оценка функций пространственной кривой. Изучение метода параметризации дуги. Криволинейный интеграл по координатам.
лекция, добавлен 17.01.2014 Рассмотрение особенностей построения замечательных кривых. Вид уравнения циссиоды Диоклеса в прямоугольной декартовой системе. Определение и построение уравнения кривой лемнискаты Бернулли. Построение уравнений и кривых кардиоиды и овала Кассини.
презентация, добавлен 07.08.2015Свойства криптостойких кривых Эдвардса над простыми полями, приемлемых для криптографических приложений. Условия сушествования изоморфных кривых в канонической форме. Определение зависимости между параметрами кривой в форме Эдвардса и канонической форме.
статья, добавлен 29.09.2018Рассмотрение алгоритма полного исследования функции, теоретических результатов по каждому пункту алгоритма. Разбор стандартных примеров исследования функций и построения графиков. Определение особенностей построения параметрически заданных кривых.
методичка, добавлен 14.09.2015