Определенные интегралы

Понятие определенного интеграла. Алгоритмы нахождения определенного интеграла методами трапеций и средних прямоугольников. Геометрический смысл определенного интеграла. Оценка абсолютной погрешности метода трапеций. Метод левых и правых прямоугольников.

Подобные документы

  • Вычисление определенных интегралов по формуле Ньютона-Лейбница. Методы численного интегрирования. Суть метода прямоугольников. Метод средних прямоугольников. Выполнение "прямого хода" и "обратного хода". Задача Дирихле для уравнения Лапласа методом сеток.

    контрольная работа, добавлен 15.06.2013

  • Изучение видов определенного и несобственного интегралов, анализ их актуальности использования в математике. Выведение формулы Валлиса, ее применение для интеграла Эйлера-Пуассона. Способ получения формулы Тейлора с остаточным членом в интегральной форме.

    курсовая работа, добавлен 21.01.2010

  • Понятие и сущность интеграла Лебега как обобщение интеграла Римана на широкий класс функций. Определение и свойства интеграла Лебега: линейность, возможность безотказного перехода к пределу. Сходимость интегралов Лебега от последовательностей функций.

    эссе, добавлен 30.06.2016

  • Использование метода прямоугольников, метода трапеций и метода парабол для вычисления определенных интегралов. Расчет и сравнение абсолютной и относительной ошибок приближенных методов. Формулы для вычисления относительной и абсолютной погрешностей.

    методичка, добавлен 27.08.2017

  • Пределы интегрирования в двойном интеграле по данной области. Вычисление двойного интеграла в прямоугольной и полярной системах координат. Вычисление криволинейного интеграла по формуле Грина. Исследование заданных рядов про признакам Даламбера и Коши.

    методичка, добавлен 10.11.2014

  • Определенные и несобственные интегралы. Несобственные интегралы первого и второго рода. Критерий Коши сходимости несобственного интеграла. Абсолютно и условно сходящиеся несобственные интегралы. Признаки сходимости и расходимости. Эталонные интегралы.

    реферат, добавлен 21.08.2008

  • Знакомство с основными этапами составления уравнений касательных. Общая характеристика способов нахождения экстремумов и интервалов монотонности функции. Рассмотрение особенностей вычисления определенного интеграла и площади фигуры, ограниченной линиями.

    контрольная работа, добавлен 23.04.2013

  • Ознакомление с основными методами решения нелинейных уравнений. Исследование и характеристика специальных способов решения определенных интегралов: правых прямоугольников и трапеций. Рассмотрение и анализ особенностей методов Эйлера и Рунге-Кутта.

    контрольная работа, добавлен 08.11.2015

  • Понятие определенного интеграла, применение формулы Ньютона-Лейбница при его вычислении. Использование метода замены переменной. Определение пределов интегрирования, правила перестановки. Свойства аддитивности и линейности. Классы интегрируемых функций.

    лекция, добавлен 03.05.2016

  • Понятие и отличительные признаки первообразной функции, требования к ней, характерные свойства, сферы применения. Нахождение площадей плоских фигур. Сущность определенного интеграла и порядок его нахождения, связь с задачей расчета площади плоских фигур.

    задача, добавлен 14.01.2012

  • Решение вариационной задачи теории мультипликативного интеграла. Исследование вариаций на экстремум функционала. Кривизна криволинейного мультипликативного интеграла как линейная функция относительно переменных. Теория мультипликативного интеграла.

    статья, добавлен 31.05.2013

  • Механизм вычисления неопределенного интеграла. Расчет площади фигуры, ограниченной заданными линиями. Доказательство расходимости несобственного интеграла. Определение экстремума функции и криволинейного интеграла. Решение дифференциального уравнения.

    контрольная работа, добавлен 25.09.2017

  • Геометрический смысл интегральной суммы. Свойства верхних и нижних сумм. Лемма Дарбу. Необходимое и достаточное условие интегрируемости. Сущность равномерно непрерывных функций. Объемы тел вращения. Правила интегрирования. Формула прямоугольников.

    реферат, добавлен 17.01.2011

  • Особенности применения теоремы Лангранжа к подынтегральной функции. Теорема о дифференцировании определенного интеграла по переменному верхнему пределу. Аппроксимация дифференциальной задачи на примере разностной схемы метода наименьших квадратов.

    шпаргалка, добавлен 24.10.2010

  • Понятие криволинейного интеграла второго рода, условие его существования. Условия независимости криволинейного интеграла второго рода от пути интегрирования. Механический смысл криволинейного интеграла второго рода, его место в многосвязной области.

    курсовая работа, добавлен 27.11.2018

  • История интегрального исчисления. Основные этапы, характеризующие метод Архимеда. Общий принцип Кавальери для площадей плоских фигур. Определение и свойства интеграла. Способы нахождения площади криволинейной трапеции. Применение интеграла в физике.

    реферат, добавлен 19.10.2010

  • Решение задачи на нахождение предела с применением правила Лопиталя. Составление уравнения касательной к графику функции. Исследование функции и построение ее графика. Пример вычисления определенного интеграла, а также решения дифференциальных уравнений.

    контрольная работа, добавлен 01.03.2017

  • Исследование преобразований интеграла и анализ его групповой структуры. Задача Л. Эйлера как одна из классических задач теории трансцендентных чисел. Проблема оценки интеграла, а также меры иррациональности значений дзета-функции Римана в целых точках.

    статья, добавлен 27.05.2018

  • Общие методы вывода квадратурных формул. Процесс вычисления определенного интеграла. Рассмотрения метода интегрирования Гаусса с плавающими узлами. Математические квадратуры в специальных случаях. Вычисление несобственных интегралов второго рода.

    учебное пособие, добавлен 13.09.2015

  • Понятие двойного интеграла, условия его существования, свойства и методы вычисления. Теорема о среднем. Вычисления объемов тел, ограниченных поверхностями, с применением геометрического смысла двойного интеграла. Интегрирование функции в области d.

    презентация, добавлен 17.09.2013

  • Сущность неопределенного интеграла. Определение производной от него, нахождение его дифференциала как подынтегрального выражения. Свойства неопределенного интеграла от алгебраической суммы (разности) двух функций, от дифференциала некоторой функции.

    презентация, добавлен 18.09.2013

  • Понятие интеграла, основная идея его построения. Сущность и структура простых функций. Интеграл Лебега от простых функций. Определение интеграла Лебега. Основные свойства и предельный переход под знаком интеграла. Сравнение интегралов Римана и Лебега.

    курсовая работа, добавлен 20.10.2010

  • Дифференциальные уравнения первого, второго и высших порядков. Ряды Тейлора и Маклорена. Евклидово пространство. Понятие функции нескольких переменных. Задачи оптимизации. Приложения определенного интеграла. Матрицы и действия с ними. Числовые ряды.

    учебное пособие, добавлен 15.09.2017

  • Задача о вычислении объема при помощи двойного интеграла. Примеры вычислений двойного интеграла в декартовых координатах и в полярной системе. Тройной интеграл в цилиндрической системе координат: нахождение объема тела, ограниченного параболоидами.

    презентация, добавлен 26.09.2017

  • Построение графика функции спроса и предложения, нахождение координаты точки равновесия. Вычисление производных. Исследование и построение графика данной функции. Вычисление неопределенного интеграла. Установление расходимости несобственного интеграла.

    контрольная работа, добавлен 21.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.