Основы математики

Решение задачи по теории вероятностей. Использование правил дифференцирования и формул для производных степенной и тригонометрической функций, нахождение производных. Отображение данных множеств при помощи кругов Эйлера. Область определения функции.

Подобные документы

  • Перестановка порядка интегрирования в силу непрерывности подынтегральной функции и конечности кривых. Оценка интеграла Коши по аналитической кривой. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции.

    контрольная работа, добавлен 23.04.2011

  • Метод Эйлера как простейший численный метод решения систем обыкновенных дифференциальных уравнений. Описание данного метода, дающего решение в виде таблицы приближенных значений искомой функции, его исправления и модификации. Оценка погрешности.

    реферат, добавлен 27.10.2019

  • Описание функций одной и многих переменных, исследование задач на максимум и минимум - локальных свойств функции. Использование высших производных. Необходимые условия и достаточные дифференциальные признаки экстремума. Понятие условного экстремума.

    курсовая работа, добавлен 08.09.2010

  • Теорема С.В. Ковалевской о существовании и единственности решения уравнения в частных производных. Доказательство положения об общем определении квазилинейного равенства. Способ построения задачи Коши с помощью геометрического смысла характеристик.

    курсовая работа, добавлен 26.02.2014

  • Исследование краевой задачи для уравнения в частных производных третьего порядка гиперболического типа в бесконечной области трехмерного евклидова пространства. Доказательство однозначной разрешимости задачи методом Римана-Адамара с помощью функции.

    статья, добавлен 20.07.2018

  • Изучение комбинаторики, основных формул теории вероятностей, геометрической вероятности, теорема Бернулли, Муавра-Лапласа, дискретных случайных величин и закона их распределения, а также определение коэффициента корреляции с помощью решения задач.

    задача, добавлен 24.02.2014

  • Свойства достоверного и невозможного события в теории вероятности. Роль комбинаторики в числе других разделов математики. Теоремы и формулы, используемые для уравнений по теории вероятностей. Математическое ожидание дискретной случайной величины.

    учебное пособие, добавлен 29.01.2014

  • Преобразование сложного квадратного корня (радикала), исключение иррациональности в дробных выражениях. Рекомендации по определению, изучению свойств степени числа, степенной функции с рациональным показателем. Применение степенной функции в эконометрике.

    дипломная работа, добавлен 04.06.2015

  • Простейшие элементарные функции: постоянная, степенная, показательная, логарифмическая, тригонометрическая, обратная. Особенности операции извлечения из корня. Изучение функций, которые можно получить при помощи конечного числа арифметических операций.

    презентация, добавлен 21.09.2013

  • Характеристика применения дифференциального исчисления в экономике при помощи понятия эластичности. Определение понятия эластичности функции и его свойства. Свойства однородных функций. Использование формулы Эйлера в прикладных экономических расчетах.

    курсовая работа, добавлен 17.03.2014

  • Основы теории множеств. Логические операции над высказываниями. Равносильные преобразования формул. Способы задания булевой функции. Метод карт Карно. Двоичное сложение и полином Жегалкина. Кванторные операции над одноместными и двуместными предикатами.

    методичка, добавлен 24.09.2019

  • Характеристика понятия и сущности, способов задания, основных операций, свойств характеристических функций множеств. Изучение декартового произведения множеств, сравнение их мощности, описание формул включений и исключений. Метод математической индукции.

    лекция, добавлен 28.04.2015

  • Понятие о теории вероятностей и математической статистике как о науках. Случайный эксперимент и его элементарные исходы. Классификация случайных событий и действия над ними. Основные теоремы теории вероятностей. Первичная обработка статистических данных.

    презентация, добавлен 24.06.2014

  • Изучение сущности и особенностей построения интерполирующей функции. Рассмотрение метода полиномиальной интерполяции Шарля Эрмита. Анализ интерполяционных формул для функций двух переменных. Специфика численного дифференцирования и его погрешность.

    реферат, добавлен 19.05.2014

  • Введение понятия бинарного события. Рассмотрение событий, задаваемых булевыми функциями. Доказывание теоремы о вероятности события. Получение расчетных формул для условных вероятностей и формул Байеса, построение задач на применение полученных формул.

    статья, добавлен 12.08.2020

  • Методы оценки влияния различных случайных факторов на рассматриваемые явления. Изучение пространства элементарных событий. Построение математической теории вероятностей. Расчет гипотезной формулы Бейеса. Определение суммы и производных двух событий.

    лекция, добавлен 18.03.2014

  • Вероятность - базовое понятие теории вероятностей – математической науки, предметом исследований которой является изучение свойств вероятностей событий, удовлетворяющих некоторым простым соотношениям. Размышления о случайном. Задача о разделе ставки.

    реферат, добавлен 19.08.2015

  • Сущность, предмет и основные объекты теории вероятностей. История становления и этапы развития теории вероятностей и математической статистики. Анализ вклада различных ученых в развитии теории вероятностей: Я. Бернулли, Моавр, Лаплас, Гаусс, Пуассон.

    реферат, добавлен 13.03.2017

  • Определение роли логических задач в обучении математики. Ознакомление с задачами, решаемыми с помощью метода "здравых суждений", составления таблиц, построения графов и с помощью кругов Эйлера. Пример задачи, решаемой с применением алгебры высказываний.

    статья, добавлен 11.11.2018

  • Рассмотрение задачи приближения периодических функций составными двухточечными многочленами Эрмита, представление этих многочленов, использующих значения функции и ее производных в точке. Связь двухточечных многочленов Эрмита и многочлена Тейлора.

    статья, добавлен 12.08.2020

  • Изучение понятия дифференциального уравнения. Комбинаций производных функций и независимые переменные. Определения вида постоянных и неопределенных функций. Дифференциальное исчисление, созданное Лейбницем и Ньютоном (1642—1727). Формула бином Ньютона.

    презентация, добавлен 26.10.2013

  • Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.

    статья, добавлен 26.04.2019

  • Теория массового обслуживания как один из разделов теории вероятностей, ее содержание и сферы практического применения, а также основные цели и задачи. Марковский случайный процесс и его закономерности. Уравнения Колмогорова для вероятностей состояний.

    лекция, добавлен 02.04.2019

  • Описание основных свойств и области определения математических функций: линейной, степенной, квадратичной, показательной, логарифмической. Построение графиков. Множество значений функции синус, тангенс, котангенс. Обратные тригонометрические функции.

    контрольная работа, добавлен 10.04.2011

  • Обоснование необходимости знания основных элементарных функций, их свойств и графиков. Свойства постоянной функции. Корень n-ой степени. Свойства степенной функции с нечетным положительным показателем. Степенная функция с четным отрицательным показателем.

    контрольная работа, добавлен 30.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.