Теория поля и элементы векторного анализа

Элементы математической теории скалярных и векторных полей. Характеристики скалярного поля. Потенциальное векторное поле, его свойства. Потенциальное несжимаемое поле и поле Лапласа (гармоническое). Теорема о разложимости произвольного векторного поля.

Подобные документы

  • Использование интегралов Френеля при вычислении интенсивности электромагнитного поля в среде, где свет огибает непрозрачные объекты. Определение интеграла, геометрический смысл определенного интеграла. Применение интеграла в строительстве и архитектуре.

    реферат, добавлен 21.03.2023

  • Оптимальні та мінімаксні оцінки екстраполяції для неперервного у середньо квадратичному поля, що спостерігається лише у цілочисельних точках. Задача фільтрації функціоналів від однорідних полів неперервних аргументів за спостереженнями у півплощині.

    автореферат, добавлен 25.08.2014

  • Использование математического аппарата для описания физических процессов. Геометрическая интерпретация векторов. Правило треугольника и параллелограмма. Свойства скалярного и векторного произведения. Преобразование координат при повороте системы отсчёта.

    учебное пособие, добавлен 19.03.2014

  • Обзор основных комбинаторных объектов. Ключевые понятия и элементы теории вероятностей. Теоремы сложения и умножения вероятностей. Классическая формула вероятности. Формула полной вероятности Байеса. Асимптотические формулы, теорема Муавра-Лапласа.

    презентация, добавлен 10.01.2017

  • Розробка методу оптимізаційного відтворення температури тіла та взаємозв'язаних полів температури і вологості з використанням контактних і дистанційних даних. Способи розв’язання задачі визначення температурного поля і характеристик джерел тепла.

    автореферат, добавлен 06.07.2014

  • Элементы линейной алгебры и ее следование из вычислительных задач. Матрица как математический объект, записываемый в виде прямоугольной таблицы элементов поля, представляющая совокупность строк и столбцов, на пересечении которых находятся её элементы.

    презентация, добавлен 19.12.2015

  • Изложение понятия и физического смысла скалярного и векторного произведения векторов в системе координат. Изучение и доказательства их свойств. Приведение некоторых метрических формул. Вычисление площади параллелограмма, построенного на векторах.

    лекция, добавлен 26.01.2014

  • Область определения функции нескольких переменных. Частные производные функций нескольких переменных. Дифференциал функции нескольких переменных. Скалярные и векторные поля. Производная по направлению. Градиент дифференцируемого скалярного поля.

    лекция, добавлен 29.09.2014

  • Определение и свойства направленных отрезков, вектора. Законы сложения, вычитания и умножения векторов. Критерии коллинеарности и компланарности векторов. Свойства базиса на прямой, на плоскости и в пространстве. Законы скалярного и векторного умножения.

    учебное пособие, добавлен 27.10.2013

  • Раздел математики, посвященный решению задач выбора и расположения элементов некоторого множества в соответствии с заданными условиями. Рекуррентные соотношения и производящие функции. Теорема о максимальном потоке и минимальном разрезе. Теория графов.

    учебное пособие, добавлен 13.01.2014

  • Операции над элементарными событиями. Вычисление вероятностей на основе классического, статистического и геометрического подхода. Теорема возможности несовместных событий. Числовые характеристики случайных величин. Методы точечных и интервальных оценок.

    учебное пособие, добавлен 15.01.2014

  • Векторное пространство как совокупность всех свободных векторов трёхмерного пространства. Евклидовое или гильбертовое пространство со скалярным произведением, определяемым в векторном исчислении. Понятие ортогональных и перпендикулярных векторов.

    контрольная работа, добавлен 11.03.2011

  • Теория поля. Элементы дифференциальной геометрии. Направление касательной в каждой точке кривой. Площадь гладкой поверхности. Предел интегральной суммы, полученной путем разбиения поверхности на малые участки и проектирования их на касательные плоскости.

    лекция, добавлен 18.10.2013

  • Линейные операции над векторами. Действия над математическими величинами, заданными своими координатами. Свойства скалярного и смешанного произведения векторов. Определение векторного произведения одноименных и разноименных ортов. Признак компланарности.

    курс лекций, добавлен 10.11.2013

  • Теория игр - раздел математики, изучающий конфликтные ситуации на основе их математических моделей. Оптимальная стратегия для каждого игрока. Признаки классификации игры. Решение матричных игр в чистых и смешанных стратегиях. Основная теорема теории игр.

    контрольная работа, добавлен 24.10.2014

  • Разработка и реализация математической модели температурного поля в осушаемом массиве польдерных систем (ПС). Постановка граничных условий и вычисление коэффициента теплопроводности. Приведение рабочих результатов численных расчетов и их интерпретация.

    статья, добавлен 23.06.2018

  • Элементы линейной алгебры и аналитической геометрии. Дифференциальное исчисление функции одной и нескольких переменных. Комплексные числа, уравнения математической физики. Элементы теории вероятностей и математической статистики, дискретная математика.

    учебное пособие, добавлен 02.12.2014

  • Понятия сходимости и аппроксимации. Топологические векторные пространства, банаховы пространства. База окрестности в точке. Теория двойственности, нормирование пространства. Теорема Крейна-Шмульяна. Понятие о топологии, порожденной семейством множеств.

    методичка, добавлен 08.09.2015

  • Классическое определение вероятности, вычисление относительной частоты, её свойства. Дискретные и непрерывные случайные величины, биноминальное распределение, задачи и функции дисперсии. Формулы Байеса и Бернулли, интегральная теорема Муавра-Лапласа.

    курс лекций, добавлен 29.09.2014

  • Элементы теории графов и комбинаторики. Использование в доказательстве теоремы Кэли. Разбиение и композиции натуральных чисел. Изучение работ венгерского математика Кенинга в 30-е годы XX столетия по математической дисциплине теории графов и элементов.

    курсовая работа, добавлен 23.12.2020

  • Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.

    шпаргалка, добавлен 09.09.2011

  • Алгебра Лейбница как векторное пространство с билинейным произведением, в котором выполняется известное тождество. Пример нинельпотентного многообразия алгебр Лейбница с условием энгелевости порядка р. Его использование для поля нулевой характеристики.

    статья, добавлен 31.05.2013

  • Матрицы и определители, операции над ними. Линейная зависимость системы векторов, свойства векторного произведения. Комплексные числа. Прямая в пространстве. Взаимное расположение прямой и плоскости. Кривые второго порядка. Решение систем уравнений.

    методичка, добавлен 22.12.2010

  • Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.

    контрольная работа, добавлен 05.05.2013

  • Центральная предельная теорема теории вероятностей как совокупность предложений, устанавливающих условия возникновения нормального закона распределения. Теорема Ляпунова и Лапласа как простейшие формы центральной предельной теоремы и их доказательство.

    реферат, добавлен 18.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.