Канонические уравнения

Понятие алгебраической кривой второго порядка. Окружность – множество, состоящее из всех точек плоскости, находящихся на равном расстоянии от фиксированной точки. Определение окружности для вывода ее уравнения. Фокусы эллипса и эксцентриситет эллипса.

Подобные документы

  • Особенность канонических уравнений линий второго порядка. Характеристика эллипса, параболы и гиперболы. Суть отношений расстояний от любой точки до фокуса. Рассмотрение полюса полярной системы координат. Анализ способа использования энергии Солнца.

    презентация, добавлен 01.03.2015

  • Общая декартова и прямоугольная системы координат на плоскости и в пространстве. Вычисление и преобразование системы координат. Приведение к каноническому виду уравнения поверхностей второго порядка в пространстве. Типы поверхностей второго порядка.

    курсовая работа, добавлен 23.04.2011

  • Определение порядка уравнения наибольшим порядком производной. Формулировка теоремы о структуре общего решения линейного уравнения 1-го порядка. Определитель Вронского как главный определитель системы уравнений. Преобразование решения по функции Эйлера.

    лекция, добавлен 14.03.2014

  • Исследование многоточечной краевой задачи, в которой функция удовлетворяет условиям Каратеодори. Вид трехточечной задачи для дифференциального уравнения второго порядка. Рассмотрение вспомогательного утверждения о разрешимости операторных уравнений.

    статья, добавлен 26.04.2019

  • Определение координат и модулей векторов, угла между ребрами AB и AC, площади грани ABC, объема пирамиды, угла между прямой AD и плоскостью ABC. Решение уравнения высоты фигуры через вершину A и уравнения прямой, проходящей через определенные точки.

    контрольная работа, добавлен 16.11.2011

  • Дифференциальные уравнения I порядка. Уравнения с разделяющимися переменными. Однородные и линейные уравнения. Теорема существования и единственности решения дифференциального уравнения. Линейное однородное уравнение с постоянными коэффициентами.

    курсовая работа, добавлен 04.03.2017

  • Уравнение плоскости, проходящей через точку. Нормальный вектор плоскости. Исследование общего уравнения плоскости. Уравнение плоскости "в отрезках". Условия параллельности и перпендикулярности двух плоскостей. Нахождение расстояния от точки до плоскости.

    лекция, добавлен 09.07.2015

  • Определение обыкновенного дифференциального уравнения. Приемы решения уравнений с разделёнными и разделяющимися переменными, задача Коша. Методы интегрирования Эйлера, Рунге-Кутта, Адамса. Геометрический смысл дифференциального уравнения первого порядка.

    курсовая работа, добавлен 26.12.2012

  • Характеристика общего уравнения прямой. Описание векторного, канонического и параметрического уравнения прямой. Вычисление угла между двумя прямыми. Условие параллельности и перпендикулярности двух прямых. Уравнения прямой, проходящей через две точки.

    лекция, добавлен 09.07.2015

  • Задача Коши для дифференциального уравнения первого порядка. Геометрический смысл - нахождение интегральной кривой, проходящей через заданную точку. Общее и частное решение. Дифференциальные уравнения первого порядка, разрешенные относительно производных.

    курсовая работа, добавлен 10.04.2011

  • Линейная зависимость векторов. Уравнение прямой, проходящей через две точки. Общее уравнение кривых второго порядка. Каноническое уравнение гиперболы и эллипса. Квадратичные формы переменных. Тригонометрическая форма комплексного числа, Bзвлечение корня.

    контрольная работа, добавлен 13.09.2009

  • Парабола как множество точек плоскости, каждая из которых находится на одинаковом расстоянии от данной точки. Расстояние между фокусом и директрисой параболы. Расстояние по формуле расстояния между двумя точками. Каноническое уравнение параболы.

    презентация, добавлен 21.09.2013

  • Решение уравнения методом хорд и касательных. Сужение отрезка изоляции корня методом проб. Вычисление комплексных корней уравнения. Построение корней на комплексной плоскости. Запись корней в алгебраической, тригонометрической и показательной формах.

    контрольная работа, добавлен 21.10.2017

  • Тригонометрические формулы, функции числового аргумента. Методика изучения числовой окружности как второй модели числового множества. Системы тригонометрических уравнений. Пример нахождения корней заданного уравнения, принадлежащего заданному промежутку.

    курсовая работа, добавлен 13.12.2021

  • Строение поверхности вблизи заданной точки. Взаимное расположение кривой и плоскости. Особенности проекции кривой на соприкасающуюся и спрямляющуюся плоскости. Уравнение огибающей семейства плоских кривых. Понятие ортогональной траектории касательной.

    лекция, добавлен 01.09.2017

  • Решение задач с параметрами в школьной программе. Методы решения уравнений и неравенств. Поиск области определения уравнения. Точки пересечения прямой с графиком функции. Система значений переменных. Множество всех допустимых значений уравнения.

    контрольная работа, добавлен 04.12.2011

  • Способы получения уравнения касательной. Определение нормали и инвариантов плоской кривой. Построение соприкасающихся и спрямляющихся плоскостей. Выражение кривизны и кручения через произвольный радиус-вектор. Параметрические уравнения поверхности.

    лекция, добавлен 01.09.2017

  • Построение чертежа на клетчатой бумаге или на координатной плоскости с выделенными целочисленными координатами характеристических точек фигуры или графика функции. Построение описанной окружности девяти точек для треугольников с углом 45 или 135 градусов.

    статья, добавлен 25.02.2016

  • Методика вычисления координат на линии и в плоскости. Основные принципы расчета площади геометрических фигур. Ознакомление с уравнениями прямой линии. Способы построения точек для эллипса, гиперболы и параболы. Математические действия над векторами.

    курс лекций, добавлен 22.11.2015

  • Особенности и специфика дифференциального уравнения. Теорема о нормальной форме уравнения, не разрешенного относительно производной в окрестности регулярной особой точки. Построение криминанты уравнения, точки касания криминанты с контактной плоскостью.

    курсовая работа, добавлен 08.01.2018

  • Характеристика основного тригонометрического тождества. Нахождение значений выражений, содержащих синусы, косинусы, тангенсы и котангенсы различных чисел. Числовая окружность на координатной плоскости. Определение координат точек числовой окружности.

    разработка урока, добавлен 16.11.2012

  • Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.

    лекция, добавлен 22.07.2015

  • Способ доказательства существования и единственности решения краевой задачи для уравнения третьего порядка с кратными характеристиками методом интегралов энергии и методом эквивалентной редукции к интегральному уравнению Фредгольма второго рода.

    статья, добавлен 30.09.2012

  • Сущность построения математической модели экономического процесса. Геометрическое истолкование дифференциального уравнения. Задача Коши. Общие свойства решений линейных однородных дифференциальных уравнений второго порядка с постоянными коэффициентами.

    курсовая работа, добавлен 17.01.2011

  • Изучение понятия окружности, радиуса, круга, хорды и диаметра. Исследование свойства длины окружности, признаков и свойств касательной, проходящей через одну точку. Характеристика особенностей центрального и вписанного углов, связанных с окружностью.

    презентация, добавлен 15.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.