Приводимые и неприводимые многочлены

Особенности состава и содержания приводимых и неприводимых многочленов. Признаки неприводимости многочленов по Эйзенштейну, Дюма и Ньютону. Использование полиномов третьей и четвёртой степени при моделировании временных рядов экономических показателей.

Подобные документы

  • Доказательство того, что многочлен Бернулли четного (нечетного) порядка равен абсолютно сходящемуся ряду по объединению хаосов Радемахера четных (нечетных) порядков. Система функций Уолша. Определение одночленов Бернулли. Разложения первых многочленов.

    статья, добавлен 31.05.2013

  • Анализ генераторов псевдослучайных чисел, построенных на точках эллиптической кривой. Анализ алгоритмов построения неприводимых многочленов и исследование свойств его корней. Исследование преимущества в скорости для алгоритма псевдослучайных чисел.

    статья, добавлен 30.05.2017

  • Описание способов решения уравнений второй, третьей и четвертой степени. Использование формулы Кардана, выражающего корни уравнения через его коэффициенты при помощи квадратных радикалов. Примеры решения уравнений второй, третьей и четвертой степени.

    курсовая работа, добавлен 08.02.2021

  • Разновидности временных рядов. Требования к исходной информации. Стохастические и детерминированные проблемы. Задачи корреляционного анализа. Сравнение последовательностей с помощью корреляции и выявление динамических рядов. Построение временных рядов.

    курсовая работа, добавлен 06.06.2012

  • Главный метод математической индукции. Преобразование логарифмических и тригонометрических выражений. Характеристика степени действительного числа и многочленов. Дифференциальное исчисление функции одной переменной. Показательные уравнения и неравенства.

    учебное пособие, добавлен 18.11.2014

  • Понятие уравнений третьей степени. Исторические факты решения уравнений высших степеней. Решение уравнений третьей степени с целыми коэффициентами. Формула Кардано для приведенного кубического уравнения. Общие способы решения кубических уравнений.

    практическая работа, добавлен 22.10.2019

  • Важнейшие показатели изменения уравнений рядов динамики. Аналитическое выравнивание временных рядов. Моделирование тенденции развития. Сглаживание временных рядов с помощью скользящих средних. Анализ курса доллара по отношению к белорусскому рублю.

    курсовая работа, добавлен 24.11.2014

  • Рассмотрение понятия временных рядов, а также основных задач их анализа. Нахождение трендового компонента и сезонной составляющей. Проверка предположения об остатках. Составление прогноза временного ряда для аддитивной и мультипликативной моделей.

    контрольная работа, добавлен 15.10.2017

  • Рассмотрение последовательности преобразований, связывающей корни полиномов деления круга с корнями полиномов. Разложение классической пары полиномов в бином Ньютона и группировка членов. Аналогия пар с полиномами Чебышева первого и второго рода.

    статья, добавлен 26.01.2019

  • Исследование методики оценки шумовой компоненты во временных рядах и ее удаление, выделение тренда и колебаний c различными периодами. Понятие Т-е и Т-h-е почти периодов для конечных рядов. Достижение гладкости функции, представляющей исходные данные.

    статья, добавлен 08.03.2019

  • Определение места и роли математических исчислений в статистическом анализе социальных явлений. Математическое описание условной модели развития эпидемии. Использование многочленов Гончароффа и исчисление производящей функции числа выживших в эпидемии.

    курсовая работа, добавлен 24.06.2012

  • Вейвлет-анализ как альтернатива преобразованию Фурье для исследования временных (пространственных) рядов с выраженной неоднородностью. Применение семейства анализирующих функций, называемых вейвлетами, для изучения и анализа изображений различной природы.

    статья, добавлен 08.12.2018

  • Временные ряды и их исследования. Методы анализа временных рядов: метод Гусеница, основные направления его использования, сравнение его с другими методами (автоагрессия, разложение Фурье, Параметрическая регрессия). Описание метода, теоретические аспекты.

    курсовая работа, добавлен 29.05.2014

  • Моделирование нестационарных неэквидистантных временных рядов по математическому ожиданию и дисперсии. Анализ аппроксимативного метода построения аналитической модели тренда и дисперсии нестационарного временного ряда с помощью ортогональных разложений.

    статья, добавлен 31.08.2018

  • Решение уравнений высших степеней. Правила действий над мнимыми и комплексными числами. невозможность алгоритма общих уравнений Формула для нахождения корней. Различные методы решения алгебраических уравнений второй, третьей и четвертой степени.

    статья, добавлен 29.04.2021

  • Подходы к решению задачи прогнозирования многомерных временных рядов. Обоснование применения деревьев решений для анализа дискретного многомерного временного ряда с неизменными во времени статистическими свойствами. Способы построения деревьев решений.

    статья, добавлен 27.02.2019

  • Краткая биографическая справка о математике, механике и основоположнике "Петербургской математической школы" - П.Л. Чебышеве. Научное и практическое наследие математика. Ознакомление с теориями о механизмах и функциях тригонометрических многочленов.

    презентация, добавлен 10.02.2014

  • Рассмотрение и характеристика необходимых скалярных произведений. Исследование и анализ свойства того, что квадрат любого их неприводимого представления разлагается в сумму остальных неприводимых представлений с кратностями, не превосходящими двух.

    статья, добавлен 26.04.2019

  • Построение интерполяционной функции, удовлетворяющей поставленному условию. Характеристика определителя Вандермонда. Подставление переменной в функцию при известных заданных коэффициентах. Рассмотрение интерполяционных многочленов Лагранжа и Ньютона.

    презентация, добавлен 30.10.2013

  • Задача предиктивной кластеризации и прогнозирования хаотических временных рядов на много шагов вперед. Реализация алгоритма прогнозирования. Ограничение ошибки и непрогнозируемые точки. Исследование результатов для финансового ряда и ряда Лоренца.

    дипломная работа, добавлен 01.12.2019

  • Определение сущности семиинвариантов (кумулянт), которые представляют собой коэффициенты разложения в ряд Тейлора логарифма характеристической функции. Характеристика особенностей биномиальной модели. Рассмотрение свойств ортогональных многочленов.

    дипломная работа, добавлен 21.06.2016

  • Определения, понятия и элементарные свойства сходящихся числовых рядов. Необходимое условие и достаточные признаки сходимости знакоположительного ряда. Признаки сравнения; признаки Даламбера, Коши. Исследование знакопеременных рядов; теорема Лейбница.

    курс лекций, добавлен 30.07.2017

  • Характеристика основных показателей динамики временных динамических рядов, а также методов их сглаживания и прогнозирования. Временное прогнозирование результативных показателей эффективности функционирования предприятия и оценка его результатов.

    лекция, добавлен 06.09.2017

  • Анализ линейно независимых функций, основные условия выполнения интерполяции для поиска многочлена, оценка возможной погрешности. Сущность методов Лагранжа и Ньютона, понятие интерполяционного полинома. Квадратическая зависимость аппроксимирующей функции.

    лабораторная работа, добавлен 20.05.2015

  • Описание алгебраических и тригонометрических многочленов на некотором интервале. Формулирование для них теоремы Чебышева об аппроксимации функций. Рассмотрение произвольной, непрерывной на [a,b] вещественной функции и обобщенной теоремы Валле-Пуссена.

    реферат, добавлен 06.05.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.