Характеристика линейной алгебры
Суть строчной, столбцовой, диагональной, единичной и транспонированной матрицы. Особенность определителей и их свойств. Собственные значения и векторы многомерной таблицы. Анализ квадратичной формы переменных. Исследование систем линейных уравнений.
Подобные документы
- 76. Ранг матрицы
Определение минора k-го порядка матрицы. Использование методов окаймляющих миноров и элементарных преобразований для вычисления ее ранга. Линейная зависимость строк (столбцов) математических таблиц. Исследование систем линейных алгебраических уравнений.
презентация, добавлен 29.08.2015 Пример решения линейных алгебраических уравнений в матричной форме с использованием различных подходов и команды приложения. Вычисление определителя по формулам Крамера и методом Гаусса. Вычисление матрицы системы, ее приведение ступенчатому виду.
лабораторная работа, добавлен 08.06.2015Главные и свободные неизвестные, входящие в выбранный минор. Использование правила Крамера. Частное решение системы. Пример решения системы линейных уравнений. Применение метода Гаусса (последовательного исключения переменных). Сравнение рангов матриц.
лекция, добавлен 26.01.2014Решение системы трех линейных уравнений методами Крамера и Гаусса с помощью определителей и преобразования матриц. Вычисление длины ребра, угла между ребрами, площади грани, уравнения плоскости и объёма пирамиды по заданным координатам её вершин.
контрольная работа, добавлен 22.08.2014Применение матриц в математике и физике для компактной записи и решения систем линейных алгебраических уравнений и систем дифференциальных уравнений. Определение матричного уравнения для миграции. Запись экономических закономерностей с помощью вектора.
практическая работа, добавлен 12.12.2019Особенности линейных дифференциальных уравнений с постоянными коэффициентами на плоскости. Определение точки равновесия (нулевого решения) однородной системы линейных уравнений. Расчет поведения фазовых кривых линейной автономной системы на плоскости.
контрольная работа, добавлен 29.11.2015Упорядоченные множества элементов. Структура представления многомерных матриц. Преобразование старшинства индексов. Метод гиперплоскостей для построения выпуклой области множества неупорядоченных элементов. Метод сингулярного разложения матрицы.
контрольная работа, добавлен 15.01.2018Составление линейной функции и решение системы из двух уравнений с двумя неизвестными. Формулы для нахождения коэффициентов по методу наименьших квадратов. Зависимость для показательной, линейной и квадратичной функций, их построение. Частные производные.
контрольная работа, добавлен 29.03.2013Классификация линейных интегральных уравнений. Уравнения Фредгольма и Вольтерра. Краевая задача на собственные значения и собственные функции (задача Штурма-Лиувилля). Поле экстремалей и функция Вейерштрасса. Изопериметрическая задача и задача Лагранжа.
курс лекций, добавлен 18.04.2014- 85. Матрица
Элементы и обозначение матриц. Свойства операции произведения матриц. Получение присоединенной матрицы путем замены каждого элемента матрицы на его алгебраическое дополнение. Использование метода обратной матрицы для решения систем линейных уравнений.
презентация, добавлен 14.11.2014 - 86. Численный метод решения систем линейных алгебраических уравнений на основе метрического алгоритма
Реализация нового численного метода решения систем линейных алгебраических уравнений, основанного на целенаправленном хаотическом поиске, стохастических вычислениях и использовании облачных технологий. Особенность генерирования векторов на итерации.
статья, добавлен 12.01.2018 Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013- 88. Алгебра матрицы
Рассмотрение понятия матрицы, её производных. Численные методы - раздел вычислительной математики, посвященный математическому описанию исследованию процессов численного решения задач линейной алгебры. Применение матрицы и ее алгебраические функции.
реферат, добавлен 25.05.2017 Знакомство с основными особенностями решения системы линейных алгебраических уравнений методом Гаусса, а также по правилу Крамера. Рассмотрение способов постройки графика функции. Методика получения эквивалентной исходной системы линейных уравнений.
контрольная работа, добавлен 23.06.2020Простые и итерационные методы вычисления систем уравнений. Нормы вектора и матрицы. Условия их согласованности. Коэффициентная устойчивость решения по правой части. Алгоритм и определение трудоемкости метода Гаусса. Операции умножения и деления.
презентация, добавлен 30.10.2013- 91. Численные методы
Анализ особенностей ортогональных систем векторов. Знакомство с численными методами решения задач. Рассмотрение приемов ортогонализации столбцов матрицы. Характеристика способов применения методов ортогонализации к решению систем линейных уравнений.
курсовая работа, добавлен 13.07.2013 - 92. Линейная алгебра
Понятие евклидова пространства. Коллинеарные векторы. Размерность и базис векторного пространства. Операции над матрицами. Линейное преобразование переменных. Теорема о делении с остатком. Понятие квадратичной формы, исчисление ее канонического базиса.
дипломная работа, добавлен 17.01.2011 Элементы теории матриц. Системы линейных уравнений. Элементы векторной алгебры. Прямая на плоскости. Определители третьего порядка. Кривые второго порядка. Плоскость и прямая в пространстве. Поверхности второго порядка. Понятие комплексных чисел.
лекция, добавлен 23.08.2016Понятие и общая характеристика, свойства и особенности матриц, определителей, систем линейных алгебраических уравнений и методы решения. Линейное пространство и преобразования в нем. Основы аналитической геометрии. Функции и предел их последовательности.
учебное пособие, добавлен 13.03.2011- 95. Обратная матрица
Определение сущности и свойств обратной матрицы. Применение метода Гаусса-Жордана для нахождения обратной матрицы. Проблема выбора начального приближения в процессах итерационного обращения матриц. Решение системы линейных алгебраических уравнений.
реферат, добавлен 26.01.2016 Элементы линейной алгебры и ее следование из вычислительных задач. Матрица как математический объект, записываемый в виде прямоугольной таблицы элементов поля, представляющая совокупность строк и столбцов, на пересечении которых находятся её элементы.
презентация, добавлен 19.12.2015Решение задач с экономическим содержанием, применяя уравнения линейной зависимости или уравнение кривых 2-го порядка. Составление матрицы для заданной квадратичной формы, ее знакоопределенность. Разложение свободных векторов по базису заданной системы.
контрольная работа, добавлен 16.10.2014Точные, итерационные и прямые методы решения систем линейных алгебраических уравнений. Реализация решения СЛАУ с помощью Microsoft Excel. Блок-схема и описание алгоритма. Программа на языке VBA. Результаты выполнения программы с заданной точностью.
контрольная работа, добавлен 08.04.2018Описание свойств объясняющих переменных в линейной эконометрической модели. Статистическая информация о реализациях переменной. Вектор и матрица коэффициентов корреляции. Исключение квазинеизменных переменных. Метод показателей информационной ёмкости.
презентация, добавлен 19.01.2015Рассмотрение инструментов, применяемых для решения задач линейной алгебры с помощью MathCad. Определение значения матричного выражения. Определение матричного выражения в буквенном виде и запись его значения. Умножение матрицы на единичную матрицу.
практическая работа, добавлен 31.10.2019