Неопределенные интегралы, дифференциальные уравнения, задача Коши
Нахождение частных производных, градиента и эластичности функции, исследование ее на экстремум. Вычисление зависимости величины банковской ставки от срока вклада, интервала сходимости степенных рядов. Решение дифференциальных уравнений и задачи Коши.
Подобные документы
Построение теории экстремумов функций многих переменных, изложенной в учебнике по дифференциальному исчислению О. Коши. Впервые в задаче на экстремум функции он применил критерий Сильвестра положительной (отрицательной) определенности квадратичных форм.
статья, добавлен 05.12.2018Обоснование теорем Даламбера относительно знакочередующихся рядов, члены которых поочередно то неотрицательны, то отрицательны. Вычисление интервала и радиуса сходимости, которые вычисляют, воспользовавшись радикальным признаком Коши. Формула Стокса.
реферат, добавлен 17.05.2012- 78. Числовые ряды
Понятие сходимости числового ряда. Сходимость положительных рядов. Признак Даламбера с использованием нижнего и верхнего предела. Объединённый признак Даламбера, радикальный признак Коши. Перестановки числовых рядов. Теорема об универсальных рядах.
контрольная работа, добавлен 26.12.2011 Сведение краевой задачи к задаче Коши. Поиск параметрического семейства решений для системы уравнений. Понятие уравнения "сшивания". Метод стрельбы для нормальной системы обыкновенных дифференциальных уравнений. Геометрическая интерпретация метода.
курсовая работа, добавлен 22.04.2011Определение зависимости между перемещениями и деформациями, сущность уравнения Коши и его использование. Условия совместности (неразрывности) деформаций. Рассмотрение дифференциального уравнения равновесия. Расчет напряжения на наклонных площадках.
курсовая работа, добавлен 19.09.2017Численное решение системы дифференциальных уравнений. Рассмотрение сущности задачи Коши, краевых задач и задач на собственные значения. Интерполяция многочленом Ньютона с разделенными разностями. Условная минимизация функций нескольких переменных.
курсовая работа, добавлен 22.02.2019История развития теории обыкновенных дифференциальных уравнений, их значение для решения задач механики. Дифференциальные уравнения первого и высшего порядков, их нормальные системы. Задачи, приводящие к понятию систем дифференциальных уравнений.
учебное пособие, добавлен 30.09.2014Понятие дифференциального уравнения. Определение функций производного порядка. Линейные дифференциальные уравнения с постоянными коэффициентами. Решение системы по методу Эйлера. Геометрическая интерпретация комплексных чисел и условия Коши-Римана.
лекция, добавлен 22.07.2015Определение дифференциального уравнения (ДУ) и понятие его порядка. Интегрирование ДУ как операция нахождения его решения. Теорема существования и единственности решения дифференциального уравнения (теорема Коши). Геометрический смысл ДУ и его решений.
лекция, добавлен 06.04.2018Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.
контрольная работа, добавлен 23.04.2022Уравнения первого порядка с разделяющимися переменными. Решение линейных уравнений первого порядка при помощи подстановки Бернулли. Линейные однородные дифференциальные уравнения. Алгоритм решения дифференциальных уравнений второго и третьего порядков.
методичка, добавлен 27.04.2016Система нелинейных дифференциальных уравнений в частных производных первого порядка. Доказательство существования решения системы интегральных уравнений. Запись операторов в функциональных пространствах с использованием принципа "сжимающих отображений".
автореферат, добавлен 12.05.2018Значение дифференциальных уравнений для эффективных моделей экономической динамики. Описание квазилинейного уравнения первого порядка в частных производных. Характеристика его многомерного случая и методов нахождения общего решения этого уравнения.
контрольная работа, добавлен 16.09.2015Уравнения Навье-Стокса как система дифференциальных уравнений в частных производных, описывающих движение вязкой ньютоновской жидкости, знакомство с основными особенностями. Общая характеристика способов решения прикладных задач газовой динамики.
контрольная работа, добавлен 25.07.2013Линейные дифференциальные уравнения n-ного и второго порядка. Уравнения с постоянными коэффициентами. Неоднородные уравнения второго порядка с постоянными коэффициентами. Уравнения в частных производных, содержащие несколько независимых переменных.
курс лекций, добавлен 26.08.2015Характеристическое вычисление кривой. Основной анализ общего интеграла дифференциального уравнения. Главная особенность решения с разделяющимися переменными в математике. Проведение и обоснование задачи Коши. Подбор решения равенств методом Лагранжа.
практическая работа, добавлен 04.12.2014Определение сущности однородного дифференциального уравнения. Характеристика процесса интегрирования однородных линейных дифференциальных уравнений второго порядка в виде обобщенного степенного ряда. Анализ разложения дифференциальных уравнений.
курсовая работа, добавлен 04.12.2018Характеристика математической модели динамики показателя оперативности арбитражных судов России в виде задачи Коши для системы разностных и дифференциальных уравнений. Анализ основных закономерностей динамики показателя оперативности арбитражных судов.
статья, добавлен 28.04.2017Методика нахождения общего решения дифференциального уравнения при помощи приведения к каноническому виду. Алгоритм вычисления задачи Коши методом Даламбера. Порядок расчета первой смешанной задачи для уравнения теплопроводности на заданном отрезке.
контрольная работа, добавлен 29.11.2016Применение дифференциальных уравнений в различных областях науки. Исторические личности и этапы развития дифференциальных уравнений. Практическое применение их в медицине, при создании аппарата "искусственная почка". Дифференциальные уравнения в биологии.
презентация, добавлен 07.05.2020Вычислены матрицы Римана первого и второго рода гиперболической системы уравнений теплопроводности. Построено решение задачи Коши для гиперболической системы уравнений. Решение задачи граничного управления процессом теплопереноса в однородном теле.
автореферат, добавлен 17.12.2017Формы, методы и средства интегрирования дифференциальных уравнений с помощью рядов. Использование признака Лейбница для исследования сходимости знакочередующихся рядов. Применение интегрирование при решении уравнений Эйри и Бесселя, Тейлора и Маклорена.
курсовая работа, добавлен 09.07.2015Методика вычисления вектора частного решения неоднородной системы дифференциальных уравнений при помощи представления матрицы Коши под знаком интеграла в виде ряда. Алгоритм расчета линейных алгебраических уравнений в объединенном матричном виде.
статья, добавлен 26.06.2016Применение математических методов в деятельности среднего медицинского персонала. Линейность или нелинейность дифференциальных уравнений. Дифференциальные уравнения с разделяющимися переменными. Моделирование с применением дифференциальных уравнений.
реферат, добавлен 19.01.2015Исследуются смешанные задачи для гиперболического уравнения с нелинейными граничными условиями. Доказано существование единственного обобщенного решения поставленных задач. Оценка уравнения с помощью неравенства Коши преобразованием части уравнения.
статья, добавлен 31.05.2013