Глубокий анализ Теории колец и их приложения

Основы теории колец, которая исследует структуры, состоящие из множества и двух бинарных операций - сложения и умножения. Кольца являются более общими структурами, чем поля, и включают в себя множество интересных свойств и алгебраических структур.

Подобные документы

  • Криптология как наука, занимающаяся методами шифрования и дешифрования. Выделение мультипликативной группы кольца вычетов. Группа в математике и ее множественные элементы с определённой на нём ассоциативной бинарной операцией. Свойства колец и полей.

    курс лекций, добавлен 11.12.2014

  • Анализ идеи системного обобщения понятий математики, в частности теории информации, основанных на теории множеств, заменой понятия множества на содержательное понятие системы. Ее реализация в разработке автоматизированного системно-когнитивного анализа.

    статья, добавлен 25.04.2017

  • Понятие качества, методы его оценки на основе измерений свойств объекта и на основе коэффициентов "трудности". Операционные основы построения производственно-квалитативных функций. Основная формула теории управления с обратной связью и ее приложения.

    методичка, добавлен 10.05.2015

  • Свойства линейных операций над векторами. Векторное пространство как действительное множество направлений с действительными компонентами, в котором определены операции сложения векторов и умножения его на число, удовлетворяющие приведенным свойствам.

    презентация, добавлен 21.09.2013

  • Особенность изображения графов на рисунках. Описание организации структур данных. Характеристика простого и сложного орграфа. Отображение алгоритма поиска центра совокупности непустого множества вершин. Анализ исследования исходного кода программы.

    контрольная работа, добавлен 07.01.2016

  • Характеристика общих понятий теории множеств. Изучение основных операций над множествами. Изучение соответствия между множествами, отображения. Анализ кортежей, декартовых произведений. Бинарные отношения и их свойства. Описание элементов комбинаторики.

    презентация, добавлен 27.01.2017

  • История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.

    реферат, добавлен 12.11.2016

  • Характеристика основной теоремы арифметики и ее роли. Рассмотрение различных колец, в которых она выполняется. Идея изучения математических объектов путем факторизации (разбиения) их на более простые математические объекты. Решение диофантовых уравнений.

    статья, добавлен 20.05.2017

  • Положения и теоремы теории вероятности в теории надежности. Теоремы сложения и умножения вероятностей. Теорема гипотез и формула Бейеса. Обработка статистических данных про надежность элементов. Критерий согласия при оценке статистических гипотез.

    контрольная работа, добавлен 03.11.2012

  • Описание свойства множества всех множеств – его несамоподобие, с использованием утверждения о количестве точек на прямой между двумя точками. Показано, что мощность множества всех множеств больше, чем мощность самоподобного множества; доказательства.

    дипломная работа, добавлен 26.04.2019

  • Идея построения теории меры для вычисления площади плоской фигуры. Особенности и примеры вычисления жордановой меры множеств. Определение меры ограниченного множества, составленного из точек прямой, с точки зрения меры Лебега. Проблемы теории меры.

    контрольная работа, добавлен 15.04.2017

  • Обозначение множества и его графическое изображение. Операции пересечения, объединения, дополнения и прямого произведения множеств. Их равенство – источник недоразумений. Исследование социального положения жителей села с помощью математической теории.

    творческая работа, добавлен 30.05.2015

  • Проведение исследования бинарной и унарной алгебраических операций на множестве. Особенность формализации нечеткой информации для построения математических моделей. Характеристика аксиом меры нечеткости. Основные виды метрик функциональных пространств.

    лабораторная работа, добавлен 06.10.2017

  • Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.

    реферат, добавлен 17.03.2015

  • Понятие и общая математическая характеристика множества, его главные свойства и отличительные признаки. Способы задания числовых значений. Описание основных операций, проводимых над множествами: объединение и пересечение. Диаграмма Эйлера-Венна.

    контрольная работа, добавлен 04.12.2013

  • Основные понятия теории множеств. Законы, которым подчиняются операции объединения, перечисления и дополнения множеств. Определение бинарных отношений, свойства операций над отношениями. Элементы теории подстановок. Основные понятия теории графов.

    учебное пособие, добавлен 15.10.2016

  • Содержательное сравнение теории множеств с самопринадлежностью (обладающей непротиворечивостью) с более ранними подходами, которые используют ослабление или отрицание аксиомы фундирования. Анализ поиска доказательств непротиворечивости теории множеств.

    статья, добавлен 26.04.2019

  • Теория вероятностей как один из разделов математики. Типы события и действия над ними. Случайное событие, его виды. Применение операций сложения и умножения при определении вероятностей. Наглядная геометрическая интерпретация этих понятий, дерево исходов.

    реферат, добавлен 10.11.2014

  • Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.

    контрольная работа, добавлен 25.12.2011

  • Применение законов сложения и умножения и вычисления результата примеров. Доказывание истинности равенства методом математической индукции. Теоретико-множественное обоснование вычитания и умножения. Натуральный смысл числа в результате измерения.

    контрольная работа, добавлен 21.05.2014

  • Понятие множества, операции и математические понятия в теории множеств. Суть и способы математического доказательства. Отношения эквивалентности и порядка на множестве. Теоретико-множественный подход в построении множества целых неотрицательных чисел.

    курс лекций, добавлен 06.08.2017

  • Понятие частично упорядоченного множества для современной теоретико-множественной математики. Теорема, позволяющая по формуле найти число линейно упорядочиваемых бинарных отношений на множестве из n элементов. Получение рекуррентной формулы уравнения.

    статья, добавлен 30.07.2017

  • Множество как абстрактная структура, предоставляющая инструменты для формализации и анализа математических концепций. Использование множества для определения чисел, операций, функций и других математических объектов. Свойства операций с множествами.

    статья, добавлен 14.12.2024

  • Введения понятия алгебры множеств. Необходимость объединять счетные наборы событий в теории вероятностей. Замкнутость множества относительно счетного числа любых других операций над событиями. Составление функций распределения на основе их рядов.

    контрольная работа, добавлен 09.01.2015

  • Обобщение одного из известных результатов С.С. Кислицына, связанного с нахождением числа нумераций конечных частично упорядоченных множеств. Понятия и обозначения теории бинарных отношений и теории групп. Существование отношений частичного порядка.

    реферат, добавлен 22.05.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.