Обобщенная формулировка задачи исследования операций

Исследование операций как метод, который дает в распоряжение инженера количественные методы для принятия решений по управлению процессов оптимизации. Математическая формулировка задач дискретного программирования. Достоинства и недостатки алгоритма.

Подобные документы

  • Изучение особенностей графического и симплексного методов решения задач линейного программирования. Геометрическая интерпретация ограничений. Нахождение максимального значения целевой функции задачи. Определение и построение области допустимых решений.

    контрольная работа, добавлен 26.05.2015

  • Пример решения задачи линейного программирования с ограничениями-равенствами. Решение матрицы системы линейных уравнений. Вариант задачи линейного программирования в общем случае (при произвольном числе свободных переменных), применение симплекс-метода.

    контрольная работа, добавлен 25.10.2009

  • Математическая модель задачи оптимизации производства. Составление задачи двойственной к исходной. Транспортная задача с использование вычислительных средств Excel. Решение задачи о назначениях преподавателей на проведение занятий с заданными условиями.

    контрольная работа, добавлен 16.06.2014

  • Постановка общей задачи линейного программирования. Преобразование ограничения-неравенства исходной задачи линейного программирования. Экономический смысл дополнительных переменных. Минимум целевой функции. Свойства задачи линейного программирования.

    лекция, добавлен 28.03.2020

  • Методика решения задач линейного программирования графическим методом. В ограничениях задачи замена знаков неравенств на знаки точных равенств и построение соответствующих прямых. Оптимальное решение задачи, определение области допустимых решений.

    статья, добавлен 15.07.2018

  • Задачи линейного программирования и их решение с помощью методов оптимизации. Построение целевой функции и определение ее минимального и максимального значений при заданных условиях-ограничениях. Решение данных задач симплекс-методом и заполнение таблиц.

    контрольная работа, добавлен 06.06.2013

  • Математическая формулировка комплексного метода Бокса. Понятие целевой функции. Основные разновидности целевых функций. Понятие системы граничных условий, разновидности систем граничных условий. Условная и безусловная оптимизация, области применения.

    контрольная работа, добавлен 02.03.2015

  • Общий вид и методы решения задач линейного программирования. Практическое применение симплекс-метода в решении задачи линейного программирования, его особенности и программная реализация. Понятие "двойственных задач линейного программирования".

    курсовая работа, добавлен 09.02.2014

  • Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.

    реферат, добавлен 15.08.2014

  • Математическая модель экономической задачи. Допустимое решение задачи линейного программирования. Основные теоремы линейного программирования. Алгоритм геометрического метода решения задач линейного программирования. Задача производственного планирования.

    лекция, добавлен 10.10.2016

  • Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.

    контрольная работа, добавлен 26.12.2011

  • Математические постановки и разнообразие формулировок задач оптимизации. Условия экстремумов, теорема об эффективности последовательных методов и особенности задач нелинейного программирования. Сбалансированная и несбалансированная транспортные задачи.

    шпаргалка, добавлен 11.09.2011

  • Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.

    курсовая работа, добавлен 20.01.2016

  • Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.

    диссертация, добавлен 19.06.2015

  • Основные принципы управления. Идентификация объектов управления, алгоритмы их оптимизации. Численные, градиентные, квазиньютоновские, комбинированные методы оптимизации. Аналитические методы исследования невыпуклых задач. Сущность проблемы нелокальности.

    курс лекций, добавлен 07.04.2015

  • Теория и основные методы формализации знаний прикладного характера, формальное решение качественных задач в математике. Изучение сущности концепции логического программирования. Математические задачи на нахождение решений известными формальными методами.

    статья, добавлен 04.03.2021

  • Создание и описание моделей и алгоритмов экспертных систем поддержки принятия решений по электромагнитной совместимости, обеспечивающих научно-практическую базу для имитационного моделирования и исследования проблемной области, процессов принятия решений.

    автореферат, добавлен 30.04.2018

  • Рассмотрение особенностей паросочетания в двудольных графах. Обзор примеров решения задач дискретного программирования методами линейного программирования. Исследование теоремы Кёнига и Фробениуса-Кёнига. Вычисление граничного ранга и ранга покрытия.

    дипломная работа, добавлен 13.12.2017

  • Краткое описание антагонистической игры. Теория и методы принятия решений. Концепция расчета по методу анализа иерархий. Особенность обработки матриц парных сравнений. Решение задачи линейного программирования. Учение сложности и преобразование Фурье.

    методичка, добавлен 21.04.2016

  • Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.

    курсовая работа, добавлен 04.03.2020

  • Основные правила составления двойственных задач. Связь между решениями прямой и двойственной задач. Геометрическая интерпретация двойственной задачи, ее примеры. Анализ устойчивости двойственных оценок. Двойственный симплекс-метод, области его применения.

    лекция, добавлен 06.09.2017

  • Изучение методов линейного программирования. Особенности их использования при решении экономических, промышленных и организационных задач. Нахождение максимума и минимума линейной функции. Геометрическое истолкование задачи линейного программирования.

    презентация, добавлен 12.07.2015

  • Возникновение вариантов решений в результате анализа проблемной ситуации, представленной в виде описательной модели. Аналитический и геометрический методы расчета при минимаксном критерии принятия решений. Критерии принятия решений Гурвица и Гермейера.

    лабораторная работа, добавлен 08.02.2015

  • Программирование в управлении как процесс распределения ресурсов. Определение метода и задачи квадратичного программирования. Анализ конечного алгоритма решения задачи квадратичного программирования. Применение конечного алгоритма решения на практике.

    курсовая работа, добавлен 23.02.2014

  • Примеры оптимизации унимодальной функции. Решение конечномерной экстремальной задачи методом выпуклого программирования. Оптимальное распределение однородных ресурсов. Решение задачи управления запасами при удовлетворенном и неудовлетворенном спросе.

    курсовая работа, добавлен 11.12.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.