Обобщенная формулировка задачи исследования операций
Исследование операций как метод, который дает в распоряжение инженера количественные методы для принятия решений по управлению процессов оптимизации. Математическая формулировка задач дискретного программирования. Достоинства и недостатки алгоритма.
Подобные документы
Изучение особенностей графического и симплексного методов решения задач линейного программирования. Геометрическая интерпретация ограничений. Нахождение максимального значения целевой функции задачи. Определение и построение области допустимых решений.
контрольная работа, добавлен 26.05.2015Математическая модель задачи оптимизации производства. Составление задачи двойственной к исходной. Транспортная задача с использование вычислительных средств Excel. Решение задачи о назначениях преподавателей на проведение занятий с заданными условиями.
контрольная работа, добавлен 16.06.2014Пример решения задачи линейного программирования с ограничениями-равенствами. Решение матрицы системы линейных уравнений. Вариант задачи линейного программирования в общем случае (при произвольном числе свободных переменных), применение симплекс-метода.
контрольная работа, добавлен 25.10.2009Постановка общей задачи линейного программирования. Преобразование ограничения-неравенства исходной задачи линейного программирования. Экономический смысл дополнительных переменных. Минимум целевой функции. Свойства задачи линейного программирования.
лекция, добавлен 28.03.2020Методика решения задач линейного программирования графическим методом. В ограничениях задачи замена знаков неравенств на знаки точных равенств и построение соответствующих прямых. Оптимальное решение задачи, определение области допустимых решений.
статья, добавлен 15.07.2018Задачи линейного программирования и их решение с помощью методов оптимизации. Построение целевой функции и определение ее минимального и максимального значений при заданных условиях-ограничениях. Решение данных задач симплекс-методом и заполнение таблиц.
контрольная работа, добавлен 06.06.2013Математическая формулировка комплексного метода Бокса. Понятие целевой функции. Основные разновидности целевых функций. Понятие системы граничных условий, разновидности систем граничных условий. Условная и безусловная оптимизация, области применения.
контрольная работа, добавлен 02.03.2015Общий вид и методы решения задач линейного программирования. Практическое применение симплекс-метода в решении задачи линейного программирования, его особенности и программная реализация. Понятие "двойственных задач линейного программирования".
курсовая работа, добавлен 09.02.2014Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.
реферат, добавлен 15.08.2014Математическая модель экономической задачи. Допустимое решение задачи линейного программирования. Основные теоремы линейного программирования. Алгоритм геометрического метода решения задач линейного программирования. Задача производственного планирования.
лекция, добавлен 10.10.2016Определение понятия нелинейного программирования. Раскрытие специфики нелинейных программ и методов их решения. Изучение градиентных методов решения задач выпуклого программирования. Решение задач нелинейного программирования методом множителей Лагранжа.
контрольная работа, добавлен 26.12.2011Математические постановки и разнообразие формулировок задач оптимизации. Условия экстремумов, теорема об эффективности последовательных методов и особенности задач нелинейного программирования. Сбалансированная и несбалансированная транспортные задачи.
шпаргалка, добавлен 11.09.2011Формулировка и решение задачи об оптимальном размещении компонентов на печатной плате или отдельных элементов в корпусе устройства. Основные понятия теории графов. Использование алгоритма Форда-Бэллмана для решения задачи. Построение матрицы смежности.
курсовая работа, добавлен 20.01.2016Постановка задачи одномерной безусловной оптимизации. Алгоритм пассивного и активного поиска минимума. Методы поиска, основанные на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.
диссертация, добавлен 19.06.2015Основные принципы управления. Идентификация объектов управления, алгоритмы их оптимизации. Численные, градиентные, квазиньютоновские, комбинированные методы оптимизации. Аналитические методы исследования невыпуклых задач. Сущность проблемы нелокальности.
курс лекций, добавлен 07.04.2015Теория и основные методы формализации знаний прикладного характера, формальное решение качественных задач в математике. Изучение сущности концепции логического программирования. Математические задачи на нахождение решений известными формальными методами.
статья, добавлен 04.03.2021- 42. Модели и алгоритмы экспертных систем поддержки принятия решений по электромагнитной совместимости
Создание и описание моделей и алгоритмов экспертных систем поддержки принятия решений по электромагнитной совместимости, обеспечивающих научно-практическую базу для имитационного моделирования и исследования проблемной области, процессов принятия решений.
автореферат, добавлен 30.04.2018 Рассмотрение особенностей паросочетания в двудольных графах. Обзор примеров решения задач дискретного программирования методами линейного программирования. Исследование теоремы Кёнига и Фробениуса-Кёнига. Вычисление граничного ранга и ранга покрытия.
дипломная работа, добавлен 13.12.2017Краткое описание антагонистической игры. Теория и методы принятия решений. Концепция расчета по методу анализа иерархий. Особенность обработки матриц парных сравнений. Решение задачи линейного программирования. Учение сложности и преобразование Фурье.
методичка, добавлен 21.04.2016Изучение основных понятий и операций над векторами, анализ координат вектора. Векторный метод решения геометрических задач. Суть векторного метода решения геометрических задач. Характеристика примеров решения геометрических задач векторным методом.
курсовая работа, добавлен 04.03.2020Основные правила составления двойственных задач. Связь между решениями прямой и двойственной задач. Геометрическая интерпретация двойственной задачи, ее примеры. Анализ устойчивости двойственных оценок. Двойственный симплекс-метод, области его применения.
лекция, добавлен 06.09.2017Изучение методов линейного программирования. Особенности их использования при решении экономических, промышленных и организационных задач. Нахождение максимума и минимума линейной функции. Геометрическое истолкование задачи линейного программирования.
презентация, добавлен 12.07.2015Возникновение вариантов решений в результате анализа проблемной ситуации, представленной в виде описательной модели. Аналитический и геометрический методы расчета при минимаксном критерии принятия решений. Критерии принятия решений Гурвица и Гермейера.
лабораторная работа, добавлен 08.02.2015Программирование в управлении как процесс распределения ресурсов. Определение метода и задачи квадратичного программирования. Анализ конечного алгоритма решения задачи квадратичного программирования. Применение конечного алгоритма решения на практике.
курсовая работа, добавлен 23.02.2014Примеры оптимизации унимодальной функции. Решение конечномерной экстремальной задачи методом выпуклого программирования. Оптимальное распределение однородных ресурсов. Решение задачи управления запасами при удовлетворенном и неудовлетворенном спросе.
курсовая работа, добавлен 11.12.2016