Математический анализ
Установление геометрического вида поверхности, получение гипербол и эллипсов в сечениях плоскости. Элементы образующие математическое множество, возможные операции над этими объектами. Понятия гиперболического параболоида, двуполостного гиперболоида.
Подобные документы
Элементы дискретной математики. Сущность математической логики. Операции над множествами. Правила, формулы дифференцирования. Неопределенный интеграл, методы интегрирования. Основы теории вероятностей и математической статистики. Понятие и предел функции.
учебное пособие, добавлен 03.07.2013Основные определения булевой функции, понятие их истинности, эквивалентности. Получение простых импликант формул с малым числом переменных с использованием карт Карно. Множество булевых функций, заданное в базисе Жегалкина. Кванторы и логика предикатов.
курс лекций, добавлен 07.09.2014Управление интеллектуальным мобильным роботом в неструктурированной среде. Математический аппарат нечетких множеств: типовые формы кривых для задания функций принадлежности, примеры: треугольная, трапецеидальная и гауссова функции принадлежности.
контрольная работа, добавлен 28.05.2013Разработка теории преобразований, обеспечивающей точность отображения объектов на плоскость. Способы задания гомотетии. Свойства аффинного преобразования. Применение в геометрии математических теорий подобия на плоскости при различных системах координат.
курсовая работа, добавлен 30.07.2017Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.
курс лекций, добавлен 08.01.2016Построение математических моделей негауссовых случайных процессов. Получение необходимых уточнений (моментов высших порядков) к корреляционному приближению. Исследование и анализ преобразований процессов при помощи операции интегрального осреднения.
автореферат, добавлен 10.08.2018Изучение одного из возможных подходов к системному обобщению математического понятия множества, а именно подхода, основанного на системной теории информации. Использование теории как основы для обобщения и создания "математической теории систем".
статья, добавлен 26.04.2017Изучение уравнения прямой линии с направляющим вектором. Гипербола - множество точек плоскости, для которых модуль разности расстояний до двух фиксированных фокусов постоянный. Векторная функция скалярного аргумента. Прямая линия, кривые второго порядка.
презентация, добавлен 29.10.2017Теория движения плоскости. Определение и свойства центральной и осевой симметрии плоскости, свойства переноса и поворота. Композиция центральных симметрии и переносов. Координатные формулы движений плоскости. Примеры задач на тему "Движение плоскости".
курсовая работа, добавлен 05.10.2017Ортогональное проецирование точки. Определение натуральной величины прямой линии. Следы плоскости. Позиционные и метрические задачи. Методы преобразования эпюра Монжа. Многогранники. Кривые поверхности. Касательные плоскости и аксонометрические проекции.
учебное пособие, добавлен 06.05.2013Действия со скалярными и векторными величинами. Уравнение прямой линии на плоскости и плоскости в пространстве. Изучение матриц и операции над ними, составление систем линейных уравнений. Понятие функции и предел числовой последовательности, производная.
курс лекций, добавлен 06.11.2009Множества: операции, свойства, уравнения, декартово произведения. Способы описания бинарного отношения. Эквивалентность, понятия комбинаторики. Графы: определения, расширения модели, оптимизационные задачи. Алгебры, группы, изоморфизмы и гомоморфизмы.
учебное пособие, добавлен 18.01.2015Отображение плоскости на себя как преобразование, где точкам исходной плоскости сопоставляются точки этой же плоскости. Типы движений на плоскости: параллельный перенос, осевая симметрия, поворот вокруг точки, центральная симметрия. Свойства гомотетии.
контрольная работа, добавлен 20.03.2011Поверхности и линии в пространстве. Рассмотрение общего уравнения плоскости. Координаты точки в системе координат. Изучение правил взаимного расположения двух прямых в пространстве. Уравнение плоскости по трем точкам. Понятие вектор в геометрии.
презентация, добавлен 26.01.2014Характеристика основных правил вычисления площади поверхности. Определение площади куска касательной плоскости. Порядок расчета поверхностного интеграла II-го рода. Составление уравнения направляющей цилиндра и вычисление площади части поверхности.
лекция, добавлен 17.01.2014Элементы, свойства и сечения конуса. Исследование вклада школы Платона в развитие геометрии. Великие книги о конических сечениях. Способ вычисления объема геометрической фигуры. Построение прямого конуса. Решение задач на нахождение элементов конуса.
презентация, добавлен 28.11.2014Аксиоматика Колмогорова. Основные понятия комбинаторики. Классические теоретико-вероятностные модели. Предельные теоремы в схеме Бернулли. Случайные величины и их распределения. Математическое ожидание и его свойства. Неравенства. Коэффициент корреляции.
учебное пособие, добавлен 25.11.2013Предложен алгоритм синтеза законов управления ограниченно неопределенными нелинейными объектами n-го порядка с математической моделью в нормальной форме и произвольным относительным порядком. Комбинированный принцип управления по производной n-переменной.
статья, добавлен 31.10.2017Понятие, история и свойства вероятности как степени возможности наступления происшествия. Зависимые и независимые события. Теорема умножения вероятности. Относительная частота события. Математическое ожидание и формула Бернулли. Закон больших чисел.
реферат, добавлен 12.12.2013Основные понятия теории множеств и теории графов. Графические диаграммы Венна. Матрица инцидентности ориентированного и неориентированного графа. Анализ матрицы смежности графа. Особенности частей, сурграфов и подграфов, маршрутов, цепей и циклов.
методичка, добавлен 15.10.2016Координаты на прямой и на плоскости. Простейшие задачи аналитической геометрии на плоскости. Линии первого порядка. Геометрические свойства линий второго порядка. Преобразование уравнений при изменении координат. Уравнение поверхности и уравнения линии.
учебное пособие, добавлен 14.03.2014Способ построения бикомпактных разностных схем четвертого порядка аппроксимации по пространственной переменной на минимальном (двухточечном) шаблоне для уравнений и систем уравнений гиперболического типа. Схема сквозного расчета разрывных решений.
автореферат, добавлен 25.07.2018Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.
методичка, добавлен 05.05.2014Элементы векторной алгебры. Басизы и координаты. Скалярное произведение. Прямые на плоскости и в пространстве. Замены координат. Конические сечения: эллипс, гипербола, парабола. Теоремы единственности для кривых второго порядка. Пополнение плоскости.
курс лекций, добавлен 10.09.2016Понятие поверхности второго порядка - геометрического места точек, декартовы прямоугольные координаты которых удовлетворяют определенное уравнение. Исследование формы поверхностей второго порядка по их каноническим уравнениям: эллипсоид, гиперболоид.
реферат, добавлен 07.01.2012