Понятие и его общая характеристика
Понятие как форма мышления, которая отражает предметы и их совокупности в абстрактной обобщённой форме на основании их существенных признаков и как одна из основных форм научного познания, изучающая предметы, явления, процессы и признаки предмета.
Подобные документы
- 101. Модели цикла
Понятие и причины цикличности, экономические циклы. Антициклическое регулирование. Теория мультипликатора-акселератора, их взаимодействие. Моделирование экономических циклов. Иррегулярные колебательные процессы в моделях перекрывающихся поколений.
реферат, добавлен 28.11.2009 Понятие системы линейных уравнений, ее структура и предъявляемые требования, методы решения. Типы систем: совместная и несовместная, определенная и неопределенная, их отличия. Особенности представления системы линейных уравнений в матричной форме.
презентация, добавлен 21.09.2013Определение предмета изучения планиметрии и стереометрии. Характеристика линий и поверхностей как важнейшего класса геометрических фигур. Изучение основных свойств прямых и плоскостей. Аксиомы стереометрии как утверждения, не требующие доказательств.
презентация, добавлен 13.04.2012Аксиоматическое построение множества натуральных чисел. Отношение делимости и его свойства. Полная и приведенная системы вычетов, теорема Эйлера и Ферма. Тригонометрическая форма записи комплексного числа. Действия над ними в алгебраической форме.
учебное пособие, добавлен 19.01.2015Понятие формации алгебраических систем. Факты о формационных свойствах универсальных алгебр (фактор-алгебр, подалгебр, конгруэнций, рядов конгруэнций), а также новые оригинальные доказательства свойств, ранее известных в общей форме для других теорий.
дипломная работа, добавлен 18.09.2009Вывод уравнения колебания струны. Формулировка краевых задач, граничные и начальные условия. Волновое уравнение, которое описывает процессы распространения упругих, звуковых, световых, электромагнитных волн, а также другие колебательные явления.
лекция, добавлен 18.11.2015История развития представления человека о числах – одна из ярких сторон становления человеческой культуры. Действия над комплексными числами в алгебраической форме. Комплексное число, сопряженное делителю. Нахождение корней уравнения и дискриминанта.
презентация, добавлен 15.06.2015- 108. Булевы функции
Понятие существенной и фиктивной переменной простых булевых функции функций. Суперпозиции и теория множеств. Нормальные формы и полиномы. Определение и характеристика классов Поста. Минимизация нормальных форм всюду определённых булевых функций.
курсовая работа, добавлен 05.12.2012 Трассировка соединений как одна из наиболее трудноразрешимых задач в общей проблеме автоматизации проектирования электронных устройств. Характеристика алгоритма для поиска пути между двумя ячейками – источником и приемником дискретного рабочего поля.
контрольная работа, добавлен 12.06.2016Методы начертательной геометрии как теоретическая база для решения задач технического черчения. Развитие пространственного воображения и навыков правильного логического мышления. Понятие о методах проецирования. Способы задания плоскости на чертеже.
курсовая работа, добавлен 21.09.2017Многократное фиктивное разыгрывание игры, когда одна итерация называется партией - сущность метода Брауна-Робинсона. Теорема, которая подтверждает сходимость алгоритма. Формулы, применяющиеся для определения значения итеративных последовательностей.
статья, добавлен 25.01.2022- 112. Аксиомы планиметрии
Понятие планиметрии как раздела геометрии, изучающего фигуры на плоскости. Понятие аксиомы принадлежности, расположения, измерения, откладывания, параллельности фигур, точек, прямых, трапеций, окружности, параллелограмма, их краткая характеристика.
презентация, добавлен 29.04.2015 Розпiзнавання та iнтерпретацiя геометричних форм зображень проекцiйної природи. Концепцiя об'єкту у багатовимiрному просторi. Вiдображення класiв еквiвалентностi геометричних форм на простiр характеристик. Аналіз растрових зображень комп'ютерної графіки.
автореферат, добавлен 23.11.2013Понятие дифференциальных уравнений первого порядка. Частный интеграл как общее и частное решение уравнения, записанное в неявной форме; задача Коши. Уравнение показательного роста. Дифференциальное уравнение закона радиоактивного распада Резерфорда.
реферат, добавлен 22.11.2013Изучение нормальной формы линейного преобразования, его собственные и присоединенные векторы. Выделение подпространства, в котором преобразование А имеет только одно собственное значение и приведение его к нормальной форме, инвариантные множители.
курсовая работа, добавлен 14.03.2010Понятие пространства элементарных событий. Сведения из теории конечных множеств и комбинаторики. Декартово произведение как одна из важнейших конструкций математики. Изучение взаимосвязей логики, интуиции и приложений. Регламент деятельности учителя.
книга, добавлен 06.05.2013Понятие экстремума, анализ теоремы о пределах функции. Знакомство с правилом нахождения минимальных и максимальных точек. Применение локальной формулы Тейлора. Характеристика экстремумов функций многих переменных. Основные признаки экстремума функции.
контрольная работа, добавлен 06.02.2012Понятие и разновидности многогранников, особенности их выпуклого типа. Характеристика различных форм правильных многогранников: тетраэдра, октаэдра, икосаэдра, гексаэдра, додекаэдра. Анализ и оценка их значения в философской картине мира Платона.
реферат, добавлен 01.11.2013Теория вероятности как наука, которая изучает закономерности массовых случайных явлений. Знакомство с особенностями применения теории вероятности и математической статистики в экономике. Общая характеристика выборочного метода статистических исследований.
статья, добавлен 25.03.2019Понятие обыкновенных дифференциальных уравнений и их применение для математического моделирования электромеханических систем. Приведение дифференциальных уравнений к нормальной форме Коши. Пример решения задачи методом Рунге-Кутты 2-го и 4-го порядков.
реферат, добавлен 05.06.2013- 121. Частные производные
Сущность частного приращения по переменной в определенной точке, особенности наличия предела и его определение. Понятие дифференцируемости функции двух переменных, необходимое условие и достаточные. Характеристика основных теорем частных производных.
лекция, добавлен 29.09.2013 Характеристика основных этапов научного пути Б.В. Гнеденко. Проведение исследования предельных теорем теории вероятностей и надежности. Особенность изучения статистических методов управления качеством продукции и концепции массового обслуживания.
статья, добавлен 14.05.2017Основные этапы развития математики. Особенности математического стиля мышления. Понятие и элементы множества. Случайный эксперимент, элементарные исходы. Сумма, произведение и разность математических событий. Теоремы сложения и умножения вероятностей.
реферат, добавлен 17.03.2015Программа стандартизации математики. Канторовское определение и понятие множества, разработка аксиоматизации. Обозначение элементов и заключение в фигурные скобки, разделение запятыми. Характеристические условия и форма логического утверждения.
контрольная работа, добавлен 28.09.2011Понятие, предмет, задачи предмета "теории вероятностей", вероятность осуществления события, достоверное и противоположное событие. Вероятность осуществления двух или нескольких взаимно исключающих и независимых событий и вероятность их совпадения.
контрольная работа, добавлен 19.12.2010