Основи вищої математики

Поняття комплексного числа. Тригонометрична форма комплексного числа. Основні дії над матрицями. Теорема про базовий мінор. Декартова система координат. Обмежені й необмежені послідовності. Елементи математичної логіки. Скінченні графи й сітки.

Подобные документы

  • В работе описан метод факторизации чисел Мерсенна, разработанный на основе утверждения о делителях числа Mp: все простые делители числа Mp имеют вид 2p*k+1. Определено значение индекса n. Выполнена формализация определения простого числа Софи Жермен.

    статья, добавлен 26.01.2020

  • Формулы сокращенного умножения и логарифмов. Наибольший общий делитель двух или нескольких натуральных чисел. Простые и составные числа. Модуль действительного числа, его свойства. Степень числа с рациональным показателем. Арифметический корень.

    учебное пособие, добавлен 04.02.2012

  • Леонардо Эйлер как великий математик. Определение числа e, приближенное вычисление его значения, трансцендентность и экспоненциальная функция. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа, добавлен 15.05.2011

  • Ф. Беллар как один из ученых вычисливший число Пи с рекордной точностью. Личная жизнь Беллара и формула вычисления числа. Числа, которыми можно назвать и вычислить Пи: подходящие (приближенные) и десятичные дроби, заглавные латинские буквы и целые числа.

    презентация, добавлен 27.04.2015

  • Теорема Чевы и Менелая, их особенности. Методика обучения решению задач в период предпрофильной подготовки. Изучение темы "Теорема Менелая и теорема Чевы" в курсе геометрии 10 класса. Применение теорем Менелая и Чевы в решении стереометрических задач.

    презентация, добавлен 20.01.2016

  • Понятие логарифма как числа, применение которого позволяет упростить многие сложные операции арифметики. Основное логарифмическое тождество. Свойства десятичного и натурального логарифма. Расчет логарифма корня, который равен логарифму подкоренного числа.

    контрольная работа, добавлен 28.10.2013

  • Особливість визначення поняття числа та видів числових множин. Досліджень чисел, які входять до множини цілих, раціональних та дійсних чисел. Розгляд різниці записів у вигляді нескінченного десяткового дробу раціонального та ірраціонального чисел.

    разработка урока, добавлен 08.06.2019

  • Особенности решений уравнений с комплексным переменным. Этапы развития теории функций комплексного переменного. Причины возникновения комплексных чисел. Основные способы решения алгебраических уравнений. Развитие техники операций над комплексными числами.

    реферат, добавлен 12.09.2012

  • Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.

    курсовая работа, добавлен 22.04.2011

  • Введення нуля і розвиток позиційної десяткової системи числення. Символіка Вієта і Декарта і розвиток алгебри в Греції, Індії та в Європі. Позначення похідної та інтеграла у Лейбніца і розвиток аналізу. Мова канторів і основи математичної логіки.

    курсовая работа, добавлен 11.03.2014

  • Теоретические основы этноориентированного обучения математики в общеобразовательной школе. Выявление необходимости реализации этноориентированного обучения на уроках математики. Задачи с этнорегиональным содержанием при изучении темы "Целые числа".

    контрольная работа, добавлен 12.06.2021

  • Встановлення кількості сагайдаків часткових та однозначних відображень, їх зв’язок з досконалими праворядними кільцями скінченного типу. Дослідження алгебраїчно замкнених полем та характеристика квазіфробеніусового симетричного кільця у теорії графів.

    автореферат, добавлен 30.10.2015

  • Основні поняття і правила обчислення теорії ймовірностей, її предмет та задачі. Події та їх види. Частота і ймовірність подій. Теореми теорії ймовірностей: додавання і добуток подій, множення, теорема гіпотез (формула Бейєса та повної ймовірності).

    презентация, добавлен 21.03.2014

  • История становления понятия вещественного числа. Конструктивные способы определения вещественного числа. Системы аксиом вещественных чисел. Связь вещественных чисел с рациональными. Обобщение и теоретико-множественные свойства вещественных чисел.

    реферат, добавлен 25.02.2016

  • Доказательство теоремы о том, что число регулярных простых чисел бесконечно. Сравнение Куммера, теорема Штаудта. Принцип бесконечного понижения (спуск). Доказательство теоремы о произведении третьего простого натурального нечетного числа на дробное.

    статья, добавлен 03.03.2018

  • Определение основных понятий числовых множеств. Граничная точка и граница множества, соединения и бином Ньютона, а также треугольник Паскаля. Характеристика комплексных чисел и операции над ними. Формула Муавра и извлечение корня из комплексного числа.

    реферат, добавлен 17.01.2011

  • Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.

    курс лекций, добавлен 20.09.2011

  • Особливості алгоритмічного підходу до доведення теорем з допомогою логіки предикатів. Аналіз математичної логіки, її місце у математичній науці. Знайомство з буквами формальної арифметики. Значення застосування логіки предикатів для доведення теорем.

    практическая работа, добавлен 08.05.2012

  • Особливості еволюції задачі: від теореми Піфагора до Великої теореми Ферма. Значення для науки великого об’єднання в математиці. Творець великої проблеми П. де Ферма: його діяльність, книга "Арифметика", способи доведення теореми про прості числа.

    презентация, добавлен 03.01.2016

  • Комбінаторна теорія розбиттів. Теорема про арифметичні прогресії. Довільні натуральні числа. Поняття розкладності топологічних просторів. Індекси розкладності та однорідні простори родин підмножин. Тополого-алгебраїчні умови. Інфімум множини кардиналів.

    автореферат, добавлен 25.06.2014

  • Изучение определения числа у Г. Фреге. Сравнительный анализ подхода Г. Фреге со взглядами И. Канта, оригинальность и приоритет фрегевского подхода. Недостатки определения числа у Г. Фреге, выявленные Б. Расселом. Критическая оценка исследований Рассела.

    статья, добавлен 24.11.2018

  • Определение эмпирических соотношений, которыми описываются простые числа и закономерности начала числовой оси натуральных чисел. Рассмотрение наличия больших интервалов числовой оси, не содержащих простые числа. Изучение интервалов с нечетными числами.

    статья, добавлен 30.03.2017

  • Краткая биография Пифагора, великого древнегреческого математика. Достижения ученого: теорема Пифагора, Пифагорейский строй. Характеристика пифагорейского числа как комбинации из трёх целых чисел. Пифагоровы штаны, пентаграмма, пифагорейский пентакл.

    презентация, добавлен 20.01.2016

  • История комплексных чисел. Особенности решения многих задач физики и техники при помощи комплексных чисел. Достоинство комплексного метода. Алгебраическая и тригонометрическая форма комплексного импеданса. Механические приложения комплексных чисел.

    статья, добавлен 03.09.2011

  • Доказательство теоремы Нетер, поиск аддитивных или асимптотически аддитивных интегралов движения в виде явных функций координат и скоростей при заданном виде функции Лагранжа без интеграции уравнений. Форма уравнений Лагранжа-Эйлера и ее инвариантность.

    курсовая работа, добавлен 10.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.