Розв'язання задач з параметрами
Систематизація основних типів задач з параметрами. Рівняння, нерівності, їх системи і сукупності, які необхідно вирішити. Розв’язання лінійних, квадратних, ірраціональних та інших рівнянь з параметрами. Нерівності та системи рівнянь з параметрами.
Подобные документы
Оцінка ефективності використання диференціальних рівнянь при вирішенні задач математичної ідеалізації процесів і явищ, що досліджуються в небесній механіці. Загальні уявлення про асимптотичні методи розв’язків задач нелінійних інваріантних функцій.
автореферат, добавлен 06.07.2014Розробка нових математичних методів для розв’язання крайових задач теорії аналітичних функцій. Розширення класу інтегральних рівнянь типу згортки зі змінними коефіцієнтами, які ефективно розв’язуються за допомогою перетворення Фур’є у квадратурах.
автореферат, добавлен 30.10.2015Методи розв’язку лінійних однорідних диференціальних рівнянь зі сталими коефіцієнтами. Властивості розв’язку однорідних рівнянь методом Ейлера та матричним. Задача Коші: частинний розв’язок неоднорідних систем, що задовольняє нульовій початковій умові.
контрольная работа, добавлен 08.11.2017Дослідження видів найбільш розповсюджених математичних рівнянь. Приклади розв’язувань завдань на рух. Засоби вирішення задач, що містять в умові невідомі числові величини. Вирішування прикладів за допомогою нерівностей та цілочислових невідомих.
лекция, добавлен 26.01.2014Конструктивне представлення розв'язків абстрактних задач для диференціальних рівнянь гіперболічного типу першого та другого порядків в гільбертовому просторі. Побудова і обґрунтування чисельно-аналітичних алгоритмів, знайдення апріорної оцінки точності.
автореферат, добавлен 25.02.2014Дослідження властивостей розв’язків нелінійних рівнянь, що виникають в конкретних задачах. Розробка алгоритму та створення комплексу програм для числового розв’язування задач. Числовий аналіз поведінки розв’язків, дослідження характеру їх галужень.
автореферат, добавлен 27.07.2014Теорії геометричного моделювання узагальнених паралельних множин для розв’язання задач формоутворення геометричних об’єктів. Їх опис за допомогою нормальної і нормалізованої функцій та шляхом розв’язання диференціальних рівнянь Гамільтона–Якобі.
автореферат, добавлен 29.09.2015Розробка нового підходу для дослідження паралельності алгоритмів розв'язання матричних систем. Розгляд особливостей ланцюгового та централізованого способів передачі інформації, а також схем діагоналізації та розрізання розв'язання матричних систем.
статья, добавлен 25.10.2018Використання методу ітерації для розв'язання систем нелінійних рівнянь. Зміни послідовного наближення x при різних варіантах взаємного розташування графіка і прямої. Положення ітерації при різних значеннях функції та похідної. Умови зациклювання ітерацій.
лекция, добавлен 06.06.2009Встановлення достатніх умов існування неперервно диференційовних розв'язків систем диференціально-функціональних рівнянь. Розв'язки послідовності систем рівнянь. Неперервні обмежені елементи матриць. Асимптотичні властивості неперервних рівнянь.
автореферат, добавлен 25.08.2015Розробка програмного забезпечення для розв’язку задачі математичного характеру. Історія виникнення методу Крамера, характеристика його переваг, можливе використання. Створення алгоритму програми, перевірка отриманих розрахунків в програмі Excel.
курсовая работа, добавлен 28.11.2016Особливість способу розв’язування різницевих рівнянь, що виникають при дискретизації двовимірних крайових задач еліптичного типу. Узагальнення поняття "ітераційні процеси Якобі і Гаусса-Зейделя". Розбиття матриці для застосування комбінованого методу.
статья, добавлен 25.08.2016Виконання наочних зображень, що пояснюють зміст геометричних властивостей, закладених у самому зв'язку між даними і шуканими елементами простору, які використовуються для розв'язання конструктивних задач. Використання команд 3D моделювання системи КОМПАС.
статья, добавлен 19.02.2016Розвиток теорії систем лінійних та нелінійних випадкових рівнянь над полем GF(3). Умови збіжності до нуля ймовірності існування розв'язків системи випадкових рівнянь з n невідомими над полем GF(3) в заданій множині векторів при умові, що n зростає.
автореферат, добавлен 28.09.2015Прямі лінійні, обернені нелінійні задачі. Початково-крайові для рівнянь параболічного та гіперболічного типів, включаючи векторний випадок (рівняння Нав'є-Стокса). Задачі реконструкції включення в обмеженому тілі за відомими даними Коші на границі тіла.
автореферат, добавлен 29.07.2014Розробка алгебраїчних методів класичного групового аналізу диференціальних рівнянь. Конструктивний метод розв'язання цієї задачі з частинними похідними. Групова класифікація квазілінійного рівняння еволюційного типу в двовимірному просторі–часі.
автореферат, добавлен 13.07.2014Розглянуто особливості використання генетичного алгоритму (ГА) для розв’язання оптимізаційних задач. Наведено класифікацію оптимізаційних задач. Детально описано структурні елементи генетичного алгоритму та їх роль для розв’язання задачі комівояжера.
статья, добавлен 19.03.2024Вивчення основ розв’язування систем однорідних рівнянь з сталими коефіцієнтами методом Ейлера та матричним методом, доведення теорем та виведення закономірностей. Властивості розв’язків лінійних неоднорідних систем. Особливості рішення задач Коші.
реферат, добавлен 19.11.2009Показникова та логарифмічна функції, властивості. Поняття та властивості логарифмів. Перетворення логарифмічних виразів. Способи розв’язання логарифмічних і показникових рівнянь та їх систем. Показниково-степеневі рівняння. Вправи для розв’язування.
лекция, добавлен 24.01.2014Нерівності першого степеня з одним невідомим, квадратні нерівності. Метод інтервалів. Ірраціональні, показникові та логарифмічні нерівності. Типові задачі, що зводяться до розв'язування систем нерівностей. Алгебраїчні нерівності Кошіта та Гельдера.
лекция, добавлен 24.01.2014Побудова та обґрунтування алгоритмів для розв’язання деяких класів оптимізаційних задач. Розробка алгоритму розв’язання сформульованої задачі групового вибору з розбиттям множини виборців на підгрупи. Рекомендації щодо вибору параметрів алгоритмів.
автореферат, добавлен 11.10.2011Розроблення методів побудови асимптотичних розв’язків сингулярно збурених систем нетерового типу для лінійних і нелінійних звичайних диференціальних рівнянь. Новий підхід до дослідження узагальнених початкових і крайових задач з імпульсною дією.
автореферат, добавлен 28.07.2014Дослідження тригонометричних операцій над оберненими тригонометричними функціями. Методи визначення основних співвідношень між ними. Способи розв'язування тригонометричного рівняння або нерівності, у яких змінна входить під знак тригонометричної функції.
реферат, добавлен 16.12.2010Властивості розв'язків лінійного однорідного диференціального рівняння. Необхідні і достатні умови лінійної незалежності розв'язків лінійного однорідного диференціального рівняння n–го порядку. Фундаментальна система розв'язків диференціального рівняння.
реферат, добавлен 30.05.2013Встановлення умов існування та єдиності розв'язку обернених задач визначення залежного від часу старшого коефіцієнта для анізотропного параболічного рівняння. Основи застосування теореми Шаудера. Аналіз властивостей інтегральних рівнянь Вольтерра.
автореферат, добавлен 17.07.2015