Модификация метода наименьших квадратов решения системы линейных уравнений с использованием аппарата квантового анализа

Развитие методов регуляризации решения систем линейных уравнения (СЛАУ). Предложение модифицированного метода наименьших квадратов решения СЛАУ, в основе которого лежит использование q-дифференцирования. Выполнение задач в математическом пакете Matlab.

Подобные документы

  • Проекционный метод Галеркина, сущность метода коллокаций и наименьших квадратов, их преимущества и недостатки. Решение краевой задачи различными методами. Оценка погрешности применения данных методов относительно точного решения в конкретных точках.

    дипломная работа, добавлен 07.11.2012

  • Особенности решения уравнения с двумя неизвестными. Построение графика, определение координат. Количество решений двух линейных уравнений с двумя переменными. Отличительные черты способа подстановки и метода сложения. Расчет верного числового равенства.

    презентация, добавлен 22.11.2015

  • Изучение матриц как инструментов для записи различных математических преобразований. Характеристика метода решения систем линейных уравнений методом Гаусса. Исследование свойства сложения матриц одинакового размера и умножения на действительное число.

    лекция, добавлен 15.11.2010

  • Простейшие тригонометрические уравнения в алгебре. Порядок разложения равенств на множители. Изучение метода подстановки как алгебраического способа решения системы линейных уравнений. Дробно-рациональные и иррациональные тригонометрические уравнения.

    реферат, добавлен 31.03.2014

  • Понятие функциональных уравнений и их виды, основные способы решения и области применения. Характеристика функциональных неравенств и методы их решения. Приёмы решения задач с параметрами. Использование метода интервалов для решения неравенств.

    курсовая работа, добавлен 13.03.2013

  • Приближённые методы решения систем линейных алгебраических уравнений. Интерполяция, аппроксимация; интерполяционный многочлен. Приближённое интегрирование функций. Численное решение трансцендентных, нелинейных и обыкновенных дифференциальных уравнений.

    курс лекций, добавлен 26.09.2017

  • Рассмотрение системы линейных уравнений. Характеристика наиболее мощного и универсального инструмента для нахождения решения любой системы линейных уравнений - метода Гаусса (последовательного исключения неизвестных). Примеры решений для чайников.

    задача, добавлен 24.11.2014

  • Применение метода наименьших квадратов при составлении математического описания криволинейной парной, единичной и множественной линейных регрессий. Особенности описания частной криволинейной регрессии на основе множественной линейной регрессии.

    краткое изложение, добавлен 22.05.2010

  • Метод простых итераций (метод последовательных приближений). Вычисления для построения графика уравнения системы. Решение системы нелинейных уравнений Microsoft Excel с использованием надстройки "поиск решения". Решения системы уравнений в пакете mathcad.

    курсовая работа, добавлен 07.11.2020

  • Теорема существования и единственности решения дифференциальных уравнений I и II порядка и уравнений с разделяющимися переменными. Особенности решения линейных уравнений и уравнения Бернулли. Линейное однородное уравнение с постоянными коэффициентами.

    реферат, добавлен 09.02.2017

  • Решение систем линейных алгебраических уравнений. Метод Гаусса - один из самых распространенных методов решения систем линейных уравнений. Метод простой итерации. Метод Зейделя. Метод последовательной верхней релаксации. Метод Ньютона, метод касательных.

    реферат, добавлен 06.03.2023

  • Сущность статистических прогнозов и задачи экономико-статистического прогнозирования. Основные методы прогнозирования в статистике: наименьших квадратов, наименьших квадратов с весами, экспоненциального сглаживания, авторегрессии. Построение прогноза.

    реферат, добавлен 08.05.2011

  • Исследование алгоритмов решения нестационарных линейных дифференциальных уравнений в коммутативных гиперкомплексных числовых системах различной размерности. Изучение дифференцирования экспонентов от гиперкомплексного переменного по скалярному аргументу.

    статья, добавлен 29.01.2019

  • Основные понятия приближённых вычислений. Учёт погрешности в арифметических действиях. Применение модифицированного метода Ньютона для вычисления систем нелинейных уравнений. Сущность методики Эйлера-Коши с последовательной итерационной обработкой.

    учебное пособие, добавлен 14.01.2017

  • Описание методов Зейделя, удобного для итерации, и Гаусса с выбором главного элемента по столбцу (схема частичного выбора) и по всей матрице (схема полного выбора) и их использование. Программы решений системы линейных уравнений данными методами.

    контрольная работа, добавлен 09.11.2010

  • Принципы выдвижения рабочей гипотезы о содержании и характере регрессии. Формульное выражение наименьших квадратов. Возможные расхождения теоретических и расчетных критериев детерминации. Интерпретация коэффициентов для решения уравнений регрессии.

    лекция, добавлен 10.10.2014

  • Понятия и свойства системы линейных алгебраических уравнений. Разложение определителя по элементам некоторого ряда. Правило Крамера. Метод Гаусса (последовательного исключения неизвестных). Обратная матрица и ее применение для решения линейных систем.

    курсовая работа, добавлен 31.12.2018

  • Точные методы решения систем линейных алгебраических уравнений. Классификация погрешностей, возникающих при решении системы линейных алгебраических уравнений. Метод А.М. Данилевского нахождения канонической формы Фробениуса. Итерационный метод вращений.

    курсовая работа, добавлен 11.03.2014

  • Решение систем линейных алгебраических уравнений, методы Гаусса и Зейделя. Схемы частичного и полного выбора, приведение системы к виду, удобному для итераций. Сравнение прямых и итерационных методов. Программа решения системы линейных уравнений.

    контрольная работа, добавлен 07.05.2009

  • Нахождение двух наименьших положительных корней уравнения. Рассмотрение метода деления отрезка пополам. Описание программного алгоритма этого метода. Определение значения корней с необходимой точностью. Характеристика метода итераций, пример решения.

    лабораторная работа, добавлен 24.11.2014

  • Анализ особенностей итерационных методов решателя, относящихся к семейству проекционных методов решения системы линейных уравнений. Изучение обобщенного метода минимальной невязки (GMRES), который может обрабатывать несимметричные разреженные матрицы.

    статья, добавлен 25.08.2020

  • Понятие метода итерации как способа численного решения математических задач. Его основные цели и порядок применения. Значение интегрированного метода трапеции, процесс оценки абсолютной погрешности. Решение системы линейных уравнений методом Гаусса.

    контрольная работа, добавлен 20.05.2013

  • Метод итерации - решение систем линейных алгебраических уравнений с вещественными коэффициентами относительно неизвестных, принимающих вещественные значения. Характеристика методов Якоби, Гаусса-Зейделя, П.Л. Чебышева. Применение итерационных методов.

    курсовая работа, добавлен 11.06.2013

  • Ознакомление с кинематической интерпретацией дифференциальных уравнений. Способы решения линейных и квадратных равенств. Показательная функция дифференцирования. Исчисление задач с постоянными коэффициентами. Содержание теории Пуанкаре–Бендиксона.

    учебное пособие, добавлен 23.12.2014

  • Понятие и структура дифференциальных уравнений, их параметры и аргументы. Главные методы решения трех основных уравнений математической физики. Классификация линейных уравнений 1-го и 2-го порядка. Суть метода Фурье. Вывод уравнения теплопроводности.

    лекция, добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.