Геометрия в пространстве
Нахождение угла между прямой и плоскостью в пространстве. Составление уравнения перпендикуляра опущенного из точки. Определение формул эллиптического, гиперболического и параболического цилиндров. Написание уравнений геометрических свойств поверхности.
Подобные документы
Декартова, полярная, цилиндрическая и сферическая системы координат на плоскости. Линии и прямые на плоскости. Угол между прямыми. Общее уравнение прямой. Выражение векторного произведения через координаты сомножителей. Угол между прямой и плоскостью.
методичка, добавлен 11.06.2014Рассмотрение методов исследования устойчивости разностных схем для линейных эволюционных уравнений в частных производных (гиперболического и параболического типов). Численное решение дифференциальных уравнений в частных производных параболического типа.
курс лекций, добавлен 29.11.2020Представление плоскости уравнением. Уравнение плоскости "в отрезках". Расстояние от точки до плоскости. Канонические и параметрические уравнения прямой. Расстояние между точками. Деление отрезка в данном отношении. Уравнение поверхности (гиперболоида).
реферат, добавлен 27.01.2016Определение поверхности первого порядка. Уравнение плоскости по точке и нормальному вектору. Математическое изображение ориентации объектов в пространстве: уравнение линии, взаимное расположение плоскостей и двух прямых, векторное равенство прямой.
лекция, добавлен 29.09.2013Составление определителя из координат векторов и его вычисление. Решение системы уравнений методом Крамера. Определение длины ребра пирамиды по формуле расстояния между двумя точками. Нахождение координат точки, симметричной относительно прямой.
контрольная работа, добавлен 11.03.2014Основы теории построения чертежа. Свойства ортогонального проецирования. Теорема о проецировании прямого угла. Правила задания прямой на комплексном чертеже. Определение натуральной величины отрезка. Взаимное расположение двух прямых в пространстве.
курс лекций, добавлен 07.11.2012Условие принадлежности точки поверхности геометрической фигуры. Проецирующее положение геометрических фигур. Построение линии пересечения геометрических фигур. Перспектива прямой линии и параллельных прямых. Рассмотрение проекции с числовыми отметками.
учебное пособие, добавлен 13.09.2017Основные виды стереометрических задач. Расчет угла между прямой и плоскостью. Рассмотрение особенностей теоремы Пифагора. Система координат на плоскости. Сущность понятия ортогональность векторов. Порядок поиска расстояний между прямыми в геометрии.
презентация, добавлен 02.03.2014Построение прямой и запись уравнением этой прямой в отрезках. Рассмотрение взаимного расположения прямых на плоскости. Определение полярной системы координат и выявление ее связи с прямоугольной декартовой. Нахождение угла между двумя заданными прямыми.
лекция, добавлен 26.01.2014Определение уравнения прямой. Расчет координаты точки, уравнения плоскости. Вычисление координаты точки пересечения двух прямых, длины отрезка, отсекаемого от оси абсцисс плоскостью, проходящей через прямую. Анализ формы кривой по заданному уравнению.
контрольная работа, добавлен 29.10.2012Рассмотрение правил построения линии сечения поверхности плоскостью. Раскрытие понятия развертки поверхности. Приведение общего принципа построения точек пересечения прямой с поверхностью. Построение развертки пирамидальных и призматических поверхностей.
лекция, добавлен 24.07.2014Исследование формы, расположения и свойства линии на плоскости. Геометрический смысл уравнения прямой. Определение угла между двумя прямыми, условия их параллельности или перпендикулярности. Применение линейной зависимости в экономических задачах.
презентация, добавлен 25.10.2016Теорема о проецировании прямого угла. Поверхность - множество последовательных положений некоторой линии (образующей), перемещающейся в пространстве по определенному закону. Придание чертежу поверхности наглядности. Линейчатые поверхности вращения.
презентация, добавлен 27.10.2013Параллельность прямых, прямой и плоскости, взаимное расположение прямых в пространстве. Перпендикулярность прямой и плоскости. Понятие вектора в пространстве, сложение и вычитание векторов. Координаты точки и координаты вектора. Определение объема тел.
учебное пособие, добавлен 24.02.2014Определение понятия производной. Изучение правил и формул дифференцирования. Анализ геометрического смысла производной. Построение уравнения касательной и нормали к графику функции, угла между ними. Решение планиметрических и стереометрических задач.
курсовая работа, добавлен 14.02.2017Нахождение достаточных условий однозначной разрешимости дифференциального уравнения Монжа-Ампера на сфере как двумерном многообразии в пространствах постоянной кривизны (в трехмерном пространстве Лобачевского и в трехмерном евклидовом пространстве).
статья, добавлен 21.06.2018Сущность линейных операций над векторами. Определение базиса и скалярного произведения. Декартова система координат. Уравнение плоскости и прямой в пространстве. Ранг матриц и операции с ними. Система и свойства решений линейных алгебраических уравнений.
курс лекций, добавлен 20.09.2011Определение коллинеарности векторов. Вычисление координат точки пересечения медиан и высот треугольника. Составление уравнения прямой, проходящей через его вершину параллельно стороне. Расчет площади основания пирамиды, используя произведения векторов.
контрольная работа, добавлен 17.11.2017Определение перпендикулярности прямых в пространстве, их расположение относительно друг друга. Определение прямой, перпендикулярной плоскости. Примеры и геометрические задачи, представляющие графическую интерпретацию прямой, перпендикулярной плоскости.
презентация, добавлен 29.01.2015- 45. Об одной нелокальной краевой задаче для гиперболического уравнения, вырождающегося внутри области
Решение гиперболических и однородных интегральных уравнений методом последовательных приближений, нахождение членов функциональной последовательности. Доказательство Леммы. Нелокальные задачи для уравнений смешанного типа с сингулярными коэффициентами.
статья, добавлен 15.06.2015 - 46. Использование дифференциальных уравнений в частных производных для моделирования реальных процессов
Задачи, приводящие к уравнениям гиперболического типа. Метод разделения переменных. Уравнения параболического типа: общая характеристика, назначение и сферы применения, задачи. Моделирование с помощью дифференциальных уравнений в частных производных.
дипломная работа, добавлен 21.01.2011 Деление отрезка пополам на две равные части перпендикуляром, проведенным через точки пересечения дуг окружностей радиуса. Построение перпендикуляра к прямой из точки, находящейся вне ее. Деление угла пополам. Построение правильных многоугольников.
лекция, добавлен 25.09.2017Позиционные задачи - задачи, связанные с определением взаимного расположения геометрических фигур. Определение точки пересечения прямой с плоскостью. Перпендикулярность и параллельность прямой и плоскости. Построение линии пересечения двух плоскостей.
лекция, добавлен 20.12.2010Линия пересечения двух плоскостей. Уравнение прямой, проходящей через заданную точку параллельно данному вектору. Определение угла из скалярного произведения векторов. Изучение условия коллинеарности. Признак перпендикулярности и параллельности прямых.
презентация, добавлен 21.09.2013Определение цилиндрической поверхности или цилиндра как множества точек пространства, лежащих на прямых, параллельных данной прямой и пересекающих данную плоскую линию. Понятие конической поверхности и характеристика гиперболического параболоида.
контрольная работа, добавлен 09.03.2015