Вероятность случайного события

Эксперимент как некоторая воспроизводимая совокупность условий, в которых наблюдается то или другое явление, фиксируется тот или другой результат, особенности его проведения, анализа в теории вероятностей. Сравнение степени возможности различных событий.

Подобные документы

  • Определение понятия и характеристика основных понятий теории вероятностей. Основы комбинаторики, относительная частота события. Геометрическое определение вероятности и ее аксиоматическое построение. Закон распределения дискретной случайной величины.

    учебное пособие, добавлен 24.11.2014

  • Понятие независимых событий и условных вероятностей, их примеры. Характеристика основных свойств независимых событий. Независимость в совокупности. Теорема сложения и умножения для n событий. Формула полной вероятности и доказательство теоремы Байеса.

    презентация, добавлен 21.09.2017

  • Нахождение вероятности выбора белых шаров из определенного количества черных. Вычисление вероятности выхода из строя элементов, заданных по условию, вероятность противоположного события. Построение графика вероятностей, использование формулы Бернулли.

    контрольная работа, добавлен 24.09.2016

  • Порядок расчета вероятности наступления того или иного события. Составление и исследование функция распределения. Вероятность попадания случайной величины в заданный интервал. Проведение расчетов полной вероятности события, анализ полученных результатов.

    контрольная работа, добавлен 30.10.2012

  • Понятие Бернулли о законе больших чисел. Предельные теоремы теории вероятностей и объяснение природы устойчивости частоты появлений события. Неравенство Маркова в теории вероятностей. Сущность математического ожидания. Практическое применение закона.

    реферат, добавлен 05.06.2012

  • Определение вероятности случайного события. Вероятность использования кредита не по назначению среди выборки заемщиков. Закон распределения числа бракованных деталей. Графическое решение распределения случайной величины. Группировка статистического ряда.

    контрольная работа, добавлен 19.01.2015

  • Предмет теории вероятности и ее задачи. Элементарные и сложные события. Частота событий и вероятность случайных событий. Классический способ задания вероятности. Теорема Муавра–Лапласа, схема Бернулли, теорема Пуассона. Распределение случайных величин.

    шпаргалка, добавлен 09.09.2011

  • Формула полной вероятности как следствие теорем о сложении и умножении вероятностей. Примеры применения формулы. Определение вероятности события А, которое может произойти только вместе с одним из событий образующих полную группу несовместных событий.

    презентация, добавлен 01.11.2013

  • История развития теории вероятности. Понятия события, его главные свойства и порядок обозначения. Характеристика основных типов: невозможное и достоверное. Задачи, решаемые формулой Байеса, ее необходимые условия. Расчет полной вероятности события.

    реферат, добавлен 21.05.2013

  • Элементы теории вероятностей. Случайные события и их вероятности. Теоремы умножения и сложения вероятностей. Формула полной вероятности и Байеса. Повторные независимые испытания. Формула Бернулли. Дискретные случайные величины. Функция распределения.

    учебное пособие, добавлен 23.02.2011

  • Определение суммы вероятностей всех элементарных событий. Формула нахождения вероятности наступления определенного количества успехов в серии из множества испытаний Бернулли. Несовместные - исходы, которые не наступают при проведении одного опыта.

    презентация, добавлен 09.11.2015

  • Математический поиск вероятности события. Расчет двухмерных случайных величин. Теоремы сложения и умножения вероятностей. Закон распределения функции случайного аргумента. Изучение формулы полной вероятности. Математическое ожидание произведения величин.

    контрольная работа, добавлен 29.11.2015

  • Операции над событиями, элементы комбинаторики. Классический геометрический и статистический метод вычисления вероятностей. Формула полной вероятности и независимые испытания. Формула Байеса и Пуассона. Локальная и интегральная теорема Муавра-Лапласа.

    дипломная работа, добавлен 27.09.2012

  • Определение вероятности случайного события. Закон распределения случайной величины и расчет числовых характеристик (математического ожидания и дисперсии). Точечные оценки математического ожидания. Оценка коэффициента корреляции, расчет линейной регрессии.

    контрольная работа, добавлен 26.10.2014

  • Случайные события, теоремы сложения и умножения вероятностей. Виды случайных величин. Математическое ожидание и дисперсия дискретной случайной величины. Закон больших чисел. Плотность распределения вероятностей. Нормальное и показательное распределение.

    курс лекций, добавлен 24.04.2015

  • Элементарная теория вероятностей. Условная вероятность и независимость событий. Случайные величины и функции распределения. Предельные теоремы в схеме испытаний Бернулли. Проблема статистического вывода, методы оценки параметров. Доверительные интервалы.

    курс лекций, добавлен 15.09.2011

  • Полная группа равновероятных и несовместных событий. Условные вероятности события. Интегральная теорема Лапласа. Сущность закона распределения дискретной случайной величины. Выборочное уравнение прямой регрессии. Гистограмма относительных частот.

    контрольная работа, добавлен 28.03.2014

  • Проведение расчетов вероятностей сложных событий с использованием формулы классического определения вероятности. Применение формулы полной вероятности и формулы Бейеса. Нахождение в задаче числа исходов, благоприятствующих интересующему событию.

    лабораторная работа, добавлен 06.10.2020

  • Математическое ожидание, дисперсия, коэффициенты корреляции - основные характеристики совместного распределения нескольких случайных величин. Специфические особенности применения теоремы умножения вероятностей для рассмотрения составных испытаний.

    реферат, добавлен 05.12.2021

  • Использование независимых событий в качестве результатов измерений, наблюдений, испытаний, опытов, анализа данных - основа вероятностно-статистических моделей. Установление критерия независимости событий - одна из важнейших задач теории вероятностей.

    статья, добавлен 09.11.2020

  • Теория вероятностей как математическая наука, позволяющая находить вероятности случайных событий, связанных каким-либо образом. Ее предмет и основные понятия, история возникновения. Теоремы: сложения вероятностей, предельная; теория случайных процессов.

    реферат, добавлен 26.02.2010

  • Основные понятия, теоремы и методы теории вероятностей и математической статистики. Общее описание случайных процессов. Исследование типовых примеров и упражнений. Сущность и элементы корреляционного анализа. Этапы проверки статистических гипотез.

    учебное пособие, добавлен 22.06.2014

  • Характеристика детерминированной и вероятностной математической модели. Сущность стохастической неопределенности и Марковского случайного процесса. Изображение потока событий на оси времени. Понятие уравнения Колмогорова для вероятностей состояний.

    лекция, добавлен 18.10.2013

  • Изучение математических законов теории вероятностей. 3адача определения закона распределения случайной величины по статистическим данным. Статистическое описание и выборочные характеристики двумерного случайного вектора. Выборочная линейная регрессия.

    курсовая работа, добавлен 18.10.2017

  • Математические подходы к определению вероятности, ее роль в науке. Классический подход к теории вероятности, понятие равновозможности. Область применения геометрической вероятности. Доказательства и примеры теорем сложения и умножения вероятностей.

    реферат, добавлен 15.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.