Теория вероятности и особенности ее применения

Применение теории вероятности для решения технических задач, характеристика ее основных понятий. Основы теории множеств, алгебра событий. Аксиомы теории вероятностей, ее правила. Теорема сложения и умножения вероятностей. Формула полной вероятности.

Подобные документы

  • Общее число возможных элементарных исходов испытания, его равенство числу способов. Вероятность правильного оформления счета на предприятии. Формула полной вероятности. Поиск математического ожидания и дисперсии. Функция распределения вероятностей.

    контрольная работа, добавлен 28.03.2015

  • Основные понятия теории вероятностей. Локальная теорема Лапласа, формула Пуассона, Бейса. Случайные величины и законы их распределения. Плотность распределения вероятности непрерывной случайной величины. Среднеквадратическое (стандартное) отклонение.

    шпаргалка, добавлен 06.11.2009

  • Характеристика понятия вероятности. Изучение истории возникновения понятия и теории вероятности. Рассмотрение методик определения вероятности: классической и статической, сравнение их основных преимуществ и недостатков. Изучение свойств вероятности.

    реферат, добавлен 12.01.2015

  • Случайные события и предмет теории вероятностей. Классическое определение вероятности. Исследование понятия "элементарный исход". Три основные вида комбинации событий. Наглядный пример вероятностной модели? Аксиоматический метод А.Н. Колмогорова.

    презентация, добавлен 11.11.2022

  • Рассмотрение элементов теории вероятностей и пространства элементарных частиц. Изучение закономерностей проведения массовых однородных испытаний. Рассмотрение условий классической схемы испытаний. Определение вероятности произведения двух событий.

    контрольная работа, добавлен 28.03.2022

  • Расчет вероятности качественного изготовления деталей с использованием формулы Бейеса. Расчет вероятности выпадения заданного числа очков игральной кости. Составление таблицы распределения вероятностей числа ошибок в проверяемых бухгалтерских балансах.

    контрольная работа, добавлен 10.05.2014

  • Изучение предмета теории вероятностей. Понятия условной и полной вероятности, случайных величин. Характеристика генеральной совокупности и выборки, вариационного ряда. Описание методов точечной и интервальной оценки, дисперсионного анализа, корреляции.

    учебное пособие, добавлен 10.05.2016

  • Использование правила суммы и правила произведения при решении задач комбинаторики. Классическое и геометрическое определение вероятности. Формула полной вероятности и формула Байеса. Схема и примеры повторных независимых испытаний (схема Бернулли).

    учебное пособие, добавлен 16.02.2014

  • Задача на нахождение вероятности искомого события. Вероятности попадания в цель при стрельбе из трех орудий. Формула Пуассона. Задача на определение вероятности того, что наудачу взятое изделие произведено на фабрике, если оно оказалось нестандартным.

    контрольная работа, добавлен 16.06.2016

  • Примеры решения задач по теории вероятности. Описание формул, которые применяются для решения таких задач. Построение группы гипотез для решения задач. Функция распределения непрерывной случайной величины. Применение равномерного закона распределения.

    курсовая работа, добавлен 07.03.2019

  • Определение числа различных комбинаций элементов, составленных из различных групп. Формула полной вероятности. Построение столбцовой диаграммы, соответствующей ряду распределения. График эмпирической функции. Расчет математического ожидания и дисперсии.

    контрольная работа, добавлен 18.05.2013

  • Исторические сведения о возникновении и развитии теории вероятностей. Определение случайного события и условные вероятности. Определение случайной величины и ее числовые характеристики, понятие математического ожидания. Примеры дискретных распределений.

    курс лекций, добавлен 08.04.2015

  • Методика определения и оценки вероятности попадания студенту "счастливого" билета на экзамене. Анализ вероятности того, что среди 12 новорожденных будет 10 девочек. Разработка закона распределения случайной величины и вычисление математического ожидания.

    контрольная работа, добавлен 19.03.2015

  • Элементы теории множеств и операции над ними. Предмет и задачи теории вероятности, основные аксиомы дискретных пространств. Правила комбинаторики: выборка, сочетание. Схемы независимых испытаний Д. Бернулли, теоремы С.Д. Пуассона и Муавра-Лапласа.

    курс лекций, добавлен 08.01.2016

  • Случайные события и вероятность. Теорема сложения вероятностей для несовместных событий. Формула Байеса. Основные законы распределения дискретных случайных величин. Формула Бернулли. Интегральная теорема Лапласа. Математическое ожидание, дисперсия.

    курс лекций, добавлен 08.12.2015

  • Сущность, предмет и основные объекты теории вероятностей. История становления и этапы развития теории вероятностей и математической статистики. Анализ вклада различных ученых в развитии теории вероятностей: Я. Бернулли, Моавр, Лаплас, Гаусс, Пуассон.

    реферат, добавлен 13.03.2017

  • Теория вероятностей как математическая наука, позволяющая по вероятностям одних случайных событий находить возможность появления других, связанных каким-либо образом с первыми. Периодизация истории науки и ее применения в естествознании и технике.

    контрольная работа, добавлен 20.11.2013

  • Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.

    контрольная работа, добавлен 04.11.2014

  • Общее понятие условной вероятности. Доказательство теоремы: вероятность произведения двух событий А и В равна произведению вероятности одного из этих событий на условную вероятность другого, вычисленную при условии, что первое событие имело место.

    презентация, добавлен 01.11.2013

  • Расчет числа объектов в выборке, несмещенного среднего значения и "исправленного" среднего квадратического отклонения. Поиск доверительных интервалов для оценки неизвестного математического ожидания. Оценка объема выборки. Поиск вероятности выздоровления.

    контрольная работа, добавлен 31.01.2016

  • Особенность применения геометрического определения вероятности. Сущность появления одного из двух несовместимых данных. Характеристика теоремы о сложении возможностей совместных и несовместных событий. Главный анализ изучения умножения случайностей.

    практическая работа, добавлен 27.11.2015

  • История зарождения и развития комбинаторики, ее применение в теории вероятностей, криптографии, терминологии и математике. Биномиальные коэффициенты ("треугольник Паскаля"). Примеры комбинаторных конфигураций и задач. Правила сложения и умножения.

    реферат, добавлен 12.11.2016

  • Определение вероятности выбора детали без дефектов из выборки, обработанной на одном определенном станке. Расчет числа взошедших семян из выборки методами теории вероятности. Расчет разности случайных величин, ее математического ожидания и дисперсии.

    контрольная работа, добавлен 06.06.2014

  • Особенности и закономерности применения теории вероятностей в различных сферах общественной жизни. Этапы ее развития и специфика использования в профессиональной деятельности. Конкретные примеры применения данной теории в экономике и менеджменте.

    статья, добавлен 20.01.2022

  • Изучение особенностей непосредственного подсчета вероятностей. Определение сущности статистической и геометрической вероятности. Характеристика центральной предельной теоремы. Исследование распределения случайных величин. Анализ теоремы Линдеберга.

    контрольная работа, добавлен 30.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.