Парадоксы в теории вероятностей
Теория вероятностей как область математики, необычайно богатая парадоксами-истинами, настолько противоречащими здравому смыслу. Знакомство с особенностями парадокса закона больших чисел Бернулли. Основные способы интерпретации метода отбора семьи.
Подобные документы
Рассмотрение элементов теории вероятностей. Испытание как осуществление комплекса условий. Элементарное событие – результат который может произойти при проведении испытания. Пространство совокупности элементарных событий – множество всех исходов испытания
курсовая работа, добавлен 14.03.2022- 102. Теория вероятностей
Равномерное распределение вероятностей. Интегральная кривая распределения Вейбулла. Экспоненциальное распределение Гумбеля. Характеристики случайных функций. Метод рандомизации Монте-Карло. Вероятность редких событий (появление случайного события).
курс лекций, добавлен 27.12.2015 Понятие случайных событий и величин в математической статистике. Основные определения и формулы, отражающие механизм дискретного распределения чисел. Очерк правил решения алгебраических и геометрических примеров со случайными пороговыми значениями.
учебное пособие, добавлен 13.01.2017Вычисление вероятностей в классической схеме, геометрических, условных вероятностей с применением формул Байеса и полной вероятности. Анализ распределений случайных величин – дискретных, непрерывных, скалярных и векторных. Методы распределения функций.
методичка, добавлен 16.05.2016Главная особенность исследования теоремы Бернулли. Построение графика распределения вероятностей. Основной анализ определения полиномиальной схемы. Характеристика гипергеометрических испытаний. Изучение интегральной приближенной формулы Муавра-Лапласа.
презентация, добавлен 25.09.2017Независимые события и правило умножения вероятностей. Анализ предельной теоремы Пуассона. Типичные законы распределения дискретных случайных величин. Особенность вероятностных векторов с самостоятельными компонентами. Сущность правила больших чисел.
курс лекций, добавлен 23.04.2016- 107. Двухмерные массивы
Контрольные задачи типового расчета по теории вероятностей и по математической статистике. Схема соединения элементов, образующих цепь с одним входом и одним выходом. "Прямое" сложение и умножение вероятностей. Математическое ожидание и дисперсия.
контрольная работа, добавлен 17.11.2014 Классическая формула сложения вероятностей, геометрические вероятности. Формула Байеса и схема Бернулли. Закон распределения случайной величины. Ковариация и коэффициент корреляции, функция распределения и функция плотности непрерывной случайной величины.
курсовая работа, добавлен 25.12.2014- 109. Теория вероятностей
Применение формулы Байеса. Условная вероятность события. Закон распределения случайной величины. Условие полной вероятности событий. Математическое ожидание, дисперсия и среднеквадратическое отклонение распределения. Плотность распределения вероятностей.
контрольная работа, добавлен 04.11.2014 Рассмотрение основных методов сопротивления материалов. Несущая способность как способность материала воспринимать внешнюю нагрузку не разрушаясь. Характеристика гипотезы Бернулли, сферы применения. Знакомство с особенностями метода мысленных сечений.
реферат, добавлен 22.10.2013Теорема сложения и умножения вероятностей. Формула Бейеса. Производящая функция. Дискретные случайные величины. Показательное распределение и его числовые характеристики. Статистическое распределение выборки. Криволинейная корреляция. Проверка гипотезы.
методичка, добавлен 07.06.2012Использование теоремы Муавра Лапласа при решении задачи по теории вероятности. Нахождение закона распределения, математического ожидания и дисперсии. Построение графика функции распределения, полигона относительных частот и гистограммы накопленных частот.
задача, добавлен 24.08.2015Вероятность событий согласно теореме о произведении вероятностей для независимых событий. График функции распределения. Математическое ожидание, дисперсия и среднее квадратичное отклонение случайной величины. Сложение вероятностей несовместных событий.
контрольная работа, добавлен 05.11.2016Понятие события в теории вероятностей. Достоверные, невозможные и случайные события. Определение вероятности события. Примеры нахождения вероятности различных событий. Понятие противоположного события. Теорема о вероятности противоположного события.
лекция, добавлен 26.07.2015- 115. Теория вероятностей
Случайное событие, его частота и вероятность. Теоремы сложения и умножения вероятностей. Формула полной вероятности (формула Бейеса). Дискретные случайные величины. Математическое ожидание и его свойства. Дисперсия непрерывной случайной величины.
методичка, добавлен 05.09.2012 - 116. Теория вероятности
Классическое и статистическое определением вероятности события. Теоремы сложения и умножения вероятностей. Задача о повторении испытаний, формула Бернулли. Локальная и интегральная теоремы Лапласа. Закон распределения дискретной случайной величины.
контрольная работа, добавлен 17.04.2015 - 117. Теория вероятностей
Изучение основных формул комбинаторики. Анализ примеров абсолютно непрерывных распределений. Характеристика теоремы Пуассона для схемы Бернулли. Рассмотрение особенностей использования формулы свёртки. Изучение основных свойств коэффициента корреляции.
учебное пособие, добавлен 28.12.2013 - 118. Расчет вероятностей
Расчет вероятности качественного изготовления деталей с использованием формулы Бейеса. Расчет вероятности выпадения заданного числа очков игральной кости. Составление таблицы распределения вероятностей числа ошибок в проверяемых бухгалтерских балансах.
контрольная работа, добавлен 10.05.2014 Общее понятие случая и события в теории вероятностей. Порядок оценки вероятности события по относительной доле благоприятных случаев. Вероятность достоверного события как вероятность события, которое всегда происходит, полагается равной единице.
презентация, добавлен 01.11.2013Характеристика особенностей формирования мировоззрения учащихся в процессе изучения элементов теории вероятностей. Анализ понятия случайность с точки зрения повседневности и с точки зрения ислама. Анализ случайных событий в школьном курсе математики.
статья, добавлен 17.02.2021Комбинаторные задачи в начальной школе и способы их решения. Изучение раздела математики, в которой изучаются вопросы различных комбинаций, подчиненных тем или иным условиям. Изучение элементы теории вероятностей и наглядной и описательной статистики.
презентация, добавлен 20.03.2022Вклад Софьи Ковалевской в развитие математического анализа, механики и астрономии. Создание Лузиным дескриптивной теории функций. Роль Колмогорова в создании системы аксиом современной теории вероятностей. Создание аналитической геометрии П. Ферма.
презентация, добавлен 05.10.2015Классическое определение вероятности. Условная вероятность и теорема умножения вероятностей. Формула Бейеса и Бернулли. Последовательные испытания и дискретные случайные величины. Нормальное распределение, дисперсия и среднее квадратическое отклонение.
контрольная работа, добавлен 25.01.2015Формулы Бейеса и Бернулли. Понятие непрерывной случайной величины. Биноминальное распределение и распределение Пуассона. Числовые характеристики дискретных случайных величин. Условные законы распределения, линейная регрессия. Закон больших чисел.
курс лекций, добавлен 18.10.2017- 125. Множества и функции
Введение в теорию множеств. Задачи, связанные с операциями над конечными множествами. Декартово произведение множеств. Основные элементарные функции. Понятия и величины дискретной математики. Элементы теории вероятностей и математической статистики.
лекция, добавлен 07.05.2014