Методические особенности расширения числовых множеств в курсе алгебры девятилетней школы
Поле как множество, содержащее не менее двух элементов, на котором заданы две бинарные алгебраические операции – умножение и сложение. Варианты построения множества рациональных чисел. Элементарное понятие о дробном числе. Введение правил сравнения.
Подобные документы
Ознакомление с основными методами расширения числовых множеств от натуральных до комплексных, как способами построения нового математического аппарата. Рассмотрение особенностей решения уравнений с комплексной переменной. Изучение теоремы Виета.
контрольная работа, добавлен 20.11.2016Системы счисления и способы написания в них натуральных чисел. Множество и подмножество рациональных чисел. Разложение на множители и свойства делимости. Основная теорема арифметики. Представление действительных чисел в виде бесконечных десятичных дробей.
лекция, добавлен 22.12.2013Обучение школьников умению пользоваться приемами сложения и вычитания, умению решать и составлять образовательные задачи. Решение числовых выражений и применение арифметических действий на уроке математики. Творческое проявление и добывание знаний.
конспект урока, добавлен 19.05.2015- 79. Теория множеств
Определение понятия множеств Г. Кантора, их примеры и обозначения. Операции над множествами: пересечение, объединение, разность и дополнение, их наглядное представление на диаграмме Эйлера-Венна. Равенство, тождественность и эквивалентность множеств.
презентация, добавлен 10.05.2016 Множества и операции над ними. Функции и формулы алгебры логики. Важнейшие замкнутые классы. Обобщение понятия равенства, отношение упорядоченности. Принцип двойственной записи вычислений. Построение совершенных нормальных форм и закон коммутативности.
методичка, добавлен 05.05.2014Упорядоченные множества элементов. Структура представления многомерных матриц. Преобразование старшинства индексов. Метод гиперплоскостей для построения выпуклой области множества неупорядоченных элементов. Метод сингулярного разложения матрицы.
контрольная работа, добавлен 15.01.2018Сущность векторной алгебры. Изучение математических операций с векторами (сложение, умножение). Понятие векторного пространства и линейной зависимости векторов, необходимость коллинеарности и компланарности. Скалярное произведение векторов и координаты.
конспект урока, добавлен 16.01.2010Виды матриц. Их сложение и умножение на число. Формула произведения согласованных матриц. Свойства линейных операций. Транспонирование математических таблиц. Характеристика определителей и их вычисление. Понятие минора и алгебраического дополнения.
презентация, добавлен 29.08.2015Теоретическое представление о таких математических понятиях как натуральные, целые и рациональные числа. Арифметические действия в десятичной и позиционной системах счисления. Множество целых и рациональных чисел. Операции со степенями и процентами.
презентация, добавлен 02.12.2013Понятие вектора в пространстве. Сложение и вычитание векторов. Умножение вектора на число. Компланарные векторы. Правило параллелепипеда. Прямоугольная система координат. Координаты вектора, длина. Скалярное произведение векторов. Угол между векторами.
презентация, добавлен 23.10.2020Рассмотрение систем линейных уравнений. Общие определения, связанные с понятием матрицы. Алгоритмы составления обратной матрицы. Сложение, умножение матриц на число, обращение и транспонирование матрицы. Сочетательный и переместительный законы.
лекция, добавлен 18.04.2014Понятия и операции реляционной алгебры. Создание реляционной модели данных. Последовательность шагов для получения результирующего отношения. Операции реляционной алгебры, обеспечивающие выполнение каждого шага. Способ объединения двух отношений.
краткое изложение, добавлен 23.09.2015Основные операции над матрицами: сложение, вычитание, умножение, а также умножение матрицы на число. Понятие определителя, его свойства и вычисление. Однородная система n линейных уравнений с n неизвестными. Решение системы уравнений методом Гаусса.
реферат, добавлен 07.04.2011Характеристика и сущности теории функций действительного переменного. Знакомство с основными теоремами, их доказательство. Анализ теоремы о произведениях конечного числа счетных множеств. Особенности теоремы, отображающей образ счётного множества.
контрольная работа, добавлен 25.12.2011Двоичная система счисления: основные сведения и понятия. Представление двоичных чисел и перевод их в десятичные. Преобразование десятичных чисел в двоичные. Арифметические действия над двоичными числами: сложение, вычитание, умножение, деление.
реферат, добавлен 21.08.2008Изучение математического значения множества отображения. Анализ симметричности и транзитивности функций. Расчет мощности бесконечного множества. Обзор теоремы подмножеств линейного порядка натуральных чисел. Сопоставление произвольной совокупности.
лекция, добавлен 18.10.2013- 92. Нечеткая логика
Форма классической логики и теории множеств, базирующиеся на понятии нечёткого множества. Применение нечетких множеств в экономическом, финансовом анализе и в современных технологиях управления. Алгоритм по формализации задачи в терминах нечеткой логики.
презентация, добавлен 29.06.2022 Определение математических понятий: множество, история теории множеств, их сравнение и операции над ними; функция и способы ее задания, группа как непустое множество, конъюнктивная нормальная форма, формальная логика и нормальный алгоритм Маркова.
контрольная работа, добавлен 19.06.2011Раскрытие сущности матрицы - математического объекта, записываемого в виде прямоугольной таблицы элементов кольца или поля. Математические действия, осуществляемые над матрицами. Сложение и умножение матриц. Транспонирование. Определители и их свойства.
контрольная работа, добавлен 02.12.2013Подсчет числа различных комбинаций как основная цель и задача комбинаторики. Классическая формула для нахождения вероятности. Перестановки элементов множества как упорядоченные элементы из всех элементов множества. Сочетание элементов вероятности.
презентация, добавлен 01.11.2013Главные свойства деления и сравнения по ненулевому рациональному модулю четных чисел. Доказательство невозможности решения заданных уравнений в целых числах. Доказательство утверждения о том, что сумма двух простых нечетных чисел есть чётным числом.
статья, добавлен 03.03.2018Основные идеи системной нечеткой интервальной математики. Доказательство теорем, показывающих, что нечеткие множества и результаты операций над ними можно рассматривать как проекции случайных множеств и результатов соответствующих операций над ними.
статья, добавлен 12.05.2017Каноническое отображение самопринадлежащих множеств как неподвижных точек отображения множества всех множеств в себя, порождаемых отношением принадлежности (с учетом транзитивности принадлежности объектов, принадлежащих самопринадлежащему объекту).
статья, добавлен 26.04.2019Определение отсутствия в теории множеств с самопринадлежностью парадокса Мириманова, парадокса Кантора, парадокса Бурали–Форти. Обоснование утверждения о том, что объединение порядковых чисел является порядковым числом - основы парадокса Бурали–Форти.
статья, добавлен 26.04.2019Идея построения теории меры для вычисления площади плоской фигуры. Особенности и примеры вычисления жордановой меры множеств. Определение меры ограниченного множества, составленного из точек прямой, с точки зрения меры Лебега. Проблемы теории меры.
контрольная работа, добавлен 15.04.2017