Группа проективных преобразований плоскости

Определения и аналитическая запись проективных преобразований плоскости. Построение матрицы коэффициентов перехода системы X к Y. Решение уравнений с тройками координат. Аффинные преобразования и перспективные отображения трехмерного пространства.

Подобные документы

  • Понятие и виды матриц, их применение в математике. Алгебраические операции, выполняемые с матрицами. Системы линейных уравнений. Условие разрешимости системы линейных уравнений на языке матриц. Примеры элементарных преобразований матриц, ранг матрицы.

    реферат, добавлен 30.01.2016

  • Исследование формы, расположения и свойства линии на плоскости. Геометрический смысл уравнения прямой. Определение угла между двумя прямыми, условия их параллельности или перпендикулярности. Применение линейной зависимости в экономических задачах.

    презентация, добавлен 25.10.2016

  • Общая декартова и прямоугольная системы координат на плоскости и в пространстве. Вычисление и преобразование системы координат. Приведение к каноническому виду уравнения поверхностей второго порядка в пространстве. Типы поверхностей второго порядка.

    курсовая работа, добавлен 23.04.2011

  • Определение и геометрический смысл смешанного произведения векторов. Формулирование необходимого и достаточного условия их компланарности. Рассмотрение уравнений линии на плоскости и прямой с угловым коэффициентом, векторного и канонического уравнений.

    лекция, добавлен 26.01.2014

  • Методика преподавания тождественных преобразований в школьном курсе математики. Показательная и логарифмическая функции, их основные свойства, используемые при тождественных преобразованиях. Решение задач с использованием тождественных преобразований.

    курсовая работа, добавлен 09.09.2012

  • Решение нелинейных алгебраических уравнений, подходы и методики данного процесса, его порядок и этапы. Решение системы двух нелинейных алгебраических уравнений. Определитель матрицы, ее умножение и сложение. Системы линейных алгебраических уравнений.

    курсовая работа, добавлен 26.07.2012

  • Понятие матрицы и ее определителя. Пример квадратной матрицы третьего порядка. Решение системы линейных уравнений при помощи метода Гаусса (представив систему в виде матрицы) и метода Крамера. Влияние выбора метода решения на конечный результат.

    курсовая работа, добавлен 28.06.2012

  • Решение квадратной системы линейных уравнений. Использование матричного вида формулы Крамера. Метод последовательных исключений Жордана-Гаусса, элементарные преобразования над строками и перестановка столбцов матрицы. Определение фундаментальной системы.

    лекция, добавлен 09.09.2017

  • Ознакомление с примерами решений дифференциальных уравнений. Характеристика особенностей применения преобразований Лапласа. Исследование процесса записи решений дифференциальных уравнений при помощи свертки. Рассмотрение формулы Грина и Дюамеля.

    презентация, добавлен 26.09.2017

  • Исследование сущности способа совмещения, частного случая вращения плоскости вокруг горизонтали и фронтали. Анализ метода решения задач преобразования плоскости общего положения в плоскость уровня. Анализ вращения вокруг следов плоскости и линии уровня.

    реферат, добавлен 25.10.2011

  • Формулы преобразований при повороте координатных осей. Простейшие уравнения точки, окружности и эллипса. Понятие эксцентриситета эллипса. Формулы фокальных радиусов. Мнимый эллипс, пара мнимых пересекающихся прямых. Каноническое уравнение гиперболы.

    лекция, добавлен 29.09.2013

  • Аналитическая геометрия и линейная алгебра. Декартова прямоугольная и полярная системы координат на плоскости. Математический анализ, дифференциальное исчисление функций одной переменной. Дифференциальные уравнения с частными производными второго порядка.

    учебное пособие, добавлен 06.10.2015

  • Определение интегральных преобразований для функции v(x), заданной на положительной полуоси. Общие свойства преобразований. Метод решения начальных задач для эволюционных уравнений дробного порядка, основанный на редукции к уравнениям целого порядка.

    лекция, добавлен 10.08.2015

  • Уравнения прямой на плоскости, его тождественное преобразование и основные понятия. Взаимное расположение прямых. Расстояние от точки до прямой. Семейство прямых на плоскости. Геометрический смысл линейного неравенства и системы линейных неравенств.

    реферат, добавлен 16.05.2013

  • Построение окружности данного радиуса, проходящей через заданную точку и касающейся данной окружности. Схема срединной перпендикулярной плоскости к отрезку AB. Построение пары перпендикулярных биссектрис смежных углов. Разность квадратов расстояний.

    презентация, добавлен 04.10.2015

  • Изучение теоремы о верхнем и нижнем разложении матрицы, имеющей ненулевую диагональ. Ознакомление с расчетными формулами, используемыми для построения матриц. Очерк математических выражений по методу Гаусса и алгоритмы для ряда системных уравнений.

    презентация, добавлен 30.10.2013

  • Получение изображения объектов пространства на плоскости методом проецирования. Центральное проецирование как общий случай проецирования геометрических объектов на плоскость. Проецирование на три плоскости проекций. Проекции точки, прямой и плоскости.

    лекция, добавлен 02.04.2019

  • Особенности и способы построения перспективных проекций на плоскости. Исходные ортогональные проекции и необходимые построения. Построение перспективы второй окружности, расположенной в параллельной плоскости. Основы построения теней в перспективе.

    курсовая работа, добавлен 25.04.2017

  • Простейшие задачи аналитической геометрии на плоскости и системы координат в геодезии и картографии. Применение матриц, элементов теории графов и систем линейных уравнений в географии. Исследования с помощью производных, дифференциалов и интегралов.

    учебное пособие, добавлен 15.04.2014

  • Понятие и виды матриц, операции с ними. Способы вычисления определителей второго, третьего и высших порядков. Матричный способ задания системы линейных уравнений. Свойство параллельности и перпендикулярности прямых. Уравнения плоскости в пространстве.

    лекция, добавлен 18.03.2015

  • Системы линейных дифференциальных уравнений. Выпуклое и нелинейное программирование. Корни характеристического многочлена. Совокупность серий для всех собственных чисел матрицы. Метод неопределенных коэффициентов. Неподвижные точки и отображения.

    учебное пособие, добавлен 26.04.2014

  • Решение матричных уравнений по формулам Крамера, методом Гаусса, с помощью обратной матрицы. Нахождение производных функций уравнений. Исследование функции и построение графиков. Вычисление интегралов, применение метода интегрирования функции по частям.

    контрольная работа, добавлен 23.04.2022

  • Определение уравнения плоскости, проходящей через точку перпендикулярно вектору. Решение системы линейных уравнений по формулам Крамера, матричным способом и методом Гаусса. Решение задач линейного программирования модифицированным симплексным методом.

    контрольная работа, добавлен 11.03.2012

  • Особенность применения конформных преобразований и интеграла типа Коши. Выполнение условий непрерывности тангенциальной составляющей вектора напряженности магнитного поля. Постановка и решение краевой задачи для комплексно-сопряженной магнитной индукции.

    статья, добавлен 06.11.2018

  • Виды матриц и операции над ними. Системы линейных алгебраических уравнений. Линейные операции над векторами. Аналитическая геометрия, уравнения плоскости. Кривые второго порядка: эллипс гипербола, парабола. Свойства предела функции, таблица производных.

    курс лекций, добавлен 05.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.