Модель линейной множественной регрессии
Проведение методом линейной множественной регрессии идентификации модели, ее верификация. Оценка статистической значимости коэффициентов В0, В1, В2 с помощью t-статистики Стьюдента. Проверка наличия автокорреляции отклонений с помощью статистики Уотсона.
Подобные документы
Оценка качества подгонки (значимости) линии регрессии к имеющимся данным. Средняя ошибка аппроксимации, анализ дисперсии, разложение отклонения от среднего. Свойства коэффициента детерминации, число степеней свободы. Дисперсионный анализ результатов.
презентация, добавлен 12.07.2015Основной расчет линейного коэффициента парной корреляции и средней ошибки аппроксимации. Анализ оценки статистической значимости параметров регрессии с помощью критерия Фишера и Стьюдента. Характеристика верхней и нижней границ доверительных интервалов.
задача, добавлен 20.06.2016Расчет оценки параметров уравнения парной линейной регрессии. Оценка тесноты связи между признаками с помощью выборочного коэффициента корреляции. Построение доверительного интервала для коэффициента регрессии. Осуществление дисперсионного анализа.
контрольная работа, добавлен 16.03.2017Понятие, предмет и задачи эконометрики. Спецификация моделей парной и множественной регрессии. Проверка значимости результатов с помощью критерия Фишера. Значение мультиколлениарности при отборе факторов. Моделирование сезонных и циклических колебаний.
шпаргалка, добавлен 02.03.2014Факторы производственного, финансового, трудового и инфраструктурного потенциалов региона, влияющие на эндогенные характеристики промышленного потенциала. Оценка коэффициентов уравнений множественной линейной регрессии и их статистические характеристики.
статья, добавлен 17.04.2022Знакомство со способами построения экспериментальных точек в декартовой системе координат. Общая характеристика ключевых этапов и проблем расчета коэффициентов парной корреляции. Рассмотрение основных особенностей линейной, а также нелинейной регрессии.
контрольная работа, добавлен 02.11.2020Назначение множественной регрессии. Коэффициент корреляции между двумя векторами. Определение наилучшего уравнения регрессии. Оценка параметров нулевого уравнения регрессии. Оптимальное количество независимых переменных. Использование метода включения.
курсовая работа, добавлен 23.11.2013Построение и анализ линейной множественной регрессии. Исследование степени корреляционной зависимости между переменными. Системы одновременных уравнений и их идентификация. Анализ временных рядов и прогнозирование. Оценка авторегрессионной модели.
лабораторная работа, добавлен 02.08.2013Сущность и цели экономического анализа, взаимосвязи переменных и поведение различных показателей. Модель парной линейной регрессии. Метод наименьших квадратов, система нормальных уравнений. Примеры реализации линейной регрессии в Microsoft Excel.
учебное пособие, добавлен 06.10.2012Уравнение линейной парной регрессии. Качественная оценка тесноты связи величин на основе шкалы Чеддока. Алгоритм оценки статистической значимости уравнения регрессии в целом. Методика расчета гиперболической, полулогарифмической и степенной моделей.
контрольная работа, добавлен 17.04.2014Определение особенностей матрицы парных коэффициентов корреляции. Расчет и характеристика параметров линейной парной регрессии. Изучение формулы коэффициента детерминации. Рассмотрение и анализ значимости полученных уравнений с помощью критерия Фишера.
контрольная работа, добавлен 07.04.2016Основная цель множественной регрессии, используемой в решении проблем спроса, изучении доходности акций и функции издержек производства. Условия включения факторов при построении множественной регрессии. Механизм действия их мультиколлинеарности.
презентация, добавлен 05.10.2015Анализ зависимости объема потребления домохозяйства от располагаемого дохода. Построение регрессионной модели. Оценка качества уравнения регрессии. Расчет коэффициента эластичности, ошибок аппроксимации и регрессии, значения коэффициента детерминации.
контрольная работа, добавлен 07.03.2016Построение уравнения линейной и квадратичной регрессии с помощью метода наименьших квадратов. Анализ тесноты связи с помощью показателей корреляции и детерминации. Расчет общего и частного F-критерия Фишера. Сущность информативных лаговых переменных.
контрольная работа, добавлен 07.10.2015Проверка статистической гипотезы значимости коэффициента функции регрессии. Построение квадратичной модели функции регрессии. Интерполирование функций, процедура линеаризации в решении нелинейной задачи регрессии. Построение полулогарифмической функции.
курсовая работа, добавлен 19.03.2015Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Оценка существенности параметров линейной регрессии и корреляции. Интервалы прогноза по линейному уравнению регрессии. Критерии оценки тесноты связи. Нелинейная регрессия.
реферат, добавлен 21.04.2010Прогнозирование с помощью моделей парной линейной, квадратичной регрессии. Статистическая значимость параметров регрессии и корреляции. Допущения и свойства оценок при использовании метода наименьших квадратов. Идентифицируемость структурных моделей.
лабораторная работа, добавлен 05.09.2013Построение поля корреляции, формулирование гипотезы о форме связи. Расчет параметров уровней линейной парной регрессии. Оценка тесноты связи с помощью показателя линейной парной корреляции. Анализ качества уравнений с помощью средней ошибки аппроксимации.
контрольная работа, добавлен 10.10.2016Линейная процедура получения оценок параметров уравнения и условия, при которых она дает несмещенные и эффективные оценки, в теореме Гаусса-Маркова. Доказательство теоремы, расчет дисперсии прогнозирования. Оценка уравнений регрессии с помощью Excel.
презентация, добавлен 02.10.2011Предмет и задачи эконометрического моделирования. Построение парных и множественных регрессионных моделей экономических процессов. Анализ модели множественной линейной регрессии. Характеристика особенностей эконометрических моделей интегрированного типа.
методичка, добавлен 14.05.2017Корреляционное поле между объемом предложения блага и его ценой. Расчет коэффициентов линейного уравнения множественной регрессии и пояснение экономического смысла его параметров. Коэффициенты автокорреляции, наличие сезонных колебаний во временном ряде.
практическая работа, добавлен 16.12.2014Определение и матричное представление линейной регрессии. Этапы проверки качества регрессионных моделей. Характеристика коэффициента детерминации, его основные свойства и расчётная формула. Определение скорректированного коэффициента детерминации.
курсовая работа, добавлен 14.12.2012Расчет параметров уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии. Оценка средней ошибки аппроксимации качества уравнений. Оценка статистической надежности результатов моделирования.
контрольная работа, добавлен 16.05.2016Статистические методы в эконометрике; количественное описание взаимосвязей переменных. Спецификация, смысл и оценка параметров линейной регрессии и корреляции. Интервалы прогноза по уравнению регрессии. Критерии тесноты связи, нелинейная регрессия.
контрольная работа, добавлен 14.06.2011Понятие математической и экономико-математической модели. Оценка значимости коэффициентов уравнения парной линейной регрессии, построение доверительных интервалов для коэффициентов. Основные показатели межотраслевого баланса и их экономический смысл.
контрольная работа, добавлен 26.01.2015