Аксиоматический метод построения научной теории в математике

Содержание аксиоматического метода построения научной теории: выделение основных понятий, формулировка аксиомы, вывод логическим путём теоремы и других определений. Разрыв между геометрией и арифметикой Евклида. Аксиома параллельности Лобачевского.

Подобные документы

  • Значение понятия "аксиома". Полное выяснение роли и подлинного значения. Впервые термин "аксиома" встречается у Аристотеля и перешёл в математику от философов Древней Греции. Евклид различает понятия "постулат" и "аксиома", не объясняя их различия.

    реферат, добавлен 09.12.2008

  • Описание основных способов задания плоскостей в пространстве, их признаки и свойства. Изучение основных аксиом стереометрии. Определение возможных вариантов взаимного расположения плоскостей в пространстве. Практическая сфера применения параллельности.

    реферат, добавлен 16.12.2019

  • Матричная запись линейной системы. Матричный метод решений. Решение системы по правилу Крамера. Формулировка теоремы Кронекера-Капелли, алгоритм решения системы. Метод Гаусса или метод исключения неизвестных, элементарные преобразования над строками.

    контрольная работа, добавлен 02.04.2012

  • Формулировка идеи разделения движений. Метод усреднения как наиболее эффективный прием в ассимптотической теории нелинейных колебаний. Определение возможности обобщения формул усреднения на непериодический случай при помощи аналитического продолжения.

    статья, добавлен 27.10.2018

  • Рассмотрение признака параллельности прямых. Изучение теоремы и леммы. Характеристика взаимного расположения прямой и плоскости. Определение угла между скрещивающимися и параллельными прямыми. Свойства равенства отрезков, заключенных между плоскостями.

    презентация, добавлен 23.10.2013

  • Исторические сведения о возникновении и распространении магических квадратов. Основные теории их построения и преобразования. Методы построения и свойства мало исследованных совершенных магических квадратов. Решение математических комбинаторных задач.

    книга, добавлен 16.05.2014

  • Обзор математических методов построения и использования классификаций. Подходы к решению задач кластер-анализа и группировки. Глобальные и локальные критерии естественности классификации. Методы дискриминантного анализа и проблема построения рейтингов.

    статья, добавлен 13.05.2017

  • Обоснование значимости теоремы Пифагора, ее применение в геометрии. Биографические факты из жизни Пифагора. Обзор математических трактатов Древнего Китая, чертеж и доказательство теоремы Пифагора в них. Доказательство теоремы Пифагора в трудах Евклида.

    реферат, добавлен 12.09.2010

  • Архимед как вершина научной мысли древнего мира. Годы обучения математика. Метод расчета площади параболического сегмента. Первый закон гидростатики. Сущность теории пяти механизмов. Изобретение бесконечного винта. Система зеркал, водонапорная машина.

    презентация, добавлен 11.12.2014

  • Примеры неприменимости метода неполной индукции в математике. Теоремы, приводящие к доказательству методом математической индукции. Описание способов доказательств утверждений в математике. Открытие общих закономерностей наблюдениями и методом индукции.

    контрольная работа, добавлен 24.11.2012

  • Изучение понятия, сущности и основных определений теории вероятности, которая в современном мире автоматизации производства необходима специалистам для решения задач, связанных с выявлением возможного хода процессов, на которые влияют случайные факторы.

    презентация, добавлен 16.02.2013

  • Использование в математике теоремы Ферма и бесконечности регулярных простых чисел. Свойства сравнения по модулю третьего натурального числа. Доказывание многих высказанных в математике предложений. Доказательство теоремы и решение данного уравнения.

    статья, добавлен 03.03.2018

  • Идея бесконечности, без которой невозможна математика, вводится в систему Principia Mathematica посредством аксиомы бесконечности. Трактовка аксиомы Расселом (английским математиком и философом) бесконечности как содержательного высказывания о мире.

    статья, добавлен 26.11.2018

  • Дерево как связный граф, не содержащий циклов. Перечень основных свойств деревьев. Общее понятие про орграф. Содержание теоремы А. Кэлли. Сущность понятия "подграф". Пример алгоритма построения каркаса в связном графе, особенности его обоснования.

    реферат, добавлен 18.04.2012

  • Обзор наиболее важных результатов в теории обобщенных паросочетаний при предпочтениях участников друг относительно друга, заданных линейными порядками. Исследование возможности построения эффективного устойчивого паросочетания в модели "один ко многим".

    дипломная работа, добавлен 16.11.2015

  • Определение и условия существования определенного интеграла. Проведение исследования основных понятий и предложений теории пределов. Характеристика формулы Ньютона-Лейбница. Выражение остаточного члена теоремы Тейлора с помощью определенной величины.

    курсовая работа, добавлен 17.12.2017

  • Аксиомы сравнения, противоречия, границ, воздействия. Аксиомы структуры информационного обмена. Свойства комплексных чисел и показательной функции. Способы укладки отрезков. Неожиданности комплексных чисел. Алгебраическая запись взаимодействия объектов.

    учебное пособие, добавлен 10.03.2017

  • Формула сочетаний и особенности ее применения для решения задач теории вероятностей. Принципы составления рада распределения. Порядок построения уравнения линейной регрессии. Расчет коэффициента корреляции. Решение уравнения множественной регрессии.

    контрольная работа, добавлен 17.05.2019

  • Анализ работ А.Н. Колмогорова по аксиоматическому подходу к теории вероятностей и средних величин. Исследование свойств медианы как оценки центра распределения. Характеристика эффекты "вздувания" коэффициента корреляции и метода наименьших квадратов.

    статья, добавлен 14.05.2017

  • Основной анализ построения алгоритма метода Гомори. Использование симплексной концепции при решении заданий. Особенность способа построения правильного отсечения без учета условия целочисленности. Характеристика решения задач линейного программирования.

    доклад, добавлен 08.06.2015

  • Доказательства классических теорем о неподвижных точках (в том числе и в бесконечномерном случае), их применения в теории дифференциальных уравнений. Сущность теоремы Банаха о сжатии полных метрических пространств, вычисление теоремы Брауэра для круга.

    дипломная работа, добавлен 22.04.2011

  • Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.

    реферат, добавлен 30.03.2017

  • Аксиомы полуплоскости и луча: их возможности в построении геометрии. Основная характеристика изучения проблемы Жордана. Особенность смежных и вертикальных углов. Изучение метода равных треугольников, как исторически первого геометрического способа.

    курсовая работа, добавлен 25.10.2015

  • Биографический очерк о жизни, научной, педагогической и общественной деятельности российского математика И.Г. Петровского, автора современной теории дифференциальных уравнений. Анализ основных направлений его исследований в области математики и механики.

    реферат, добавлен 19.11.2009

  • Основные понятия теории вероятностей, пространство случайных и элементарных событий. Операции над событиями (сумма, разность, произведение) и свойства операций. Сущность алгебры и сигма-алгебры событий, аксиоматическое построение теории вероятностей.

    реферат, добавлен 25.02.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.