Постановка задачи интерполяции и общие идеи её решения

Описание интерполирования методом Лагранжа. Интерполяционная формула Ньютона. Характеристика пользовательского интерфейса программной реализации рассматриваемых методов. Алгоритм вывода графика проинтерполированной функции. Информация о программе.

Подобные документы

  • Исследование этапов вычисления определенных интегралов с помощью формулы Ньютона-Лейбница. Нахождение первообразной подынтегральной функции. Доказательство основной теоремы анализа. Характеристика операций дифференциального и интегрального исчислений.

    презентация, добавлен 18.09.2013

  • Сущность численных методов решения нелинейных и дифференциальных уравнений и интерполяции функций. Алгоритм решения типовых задач с помощью программного обеспечения. Анализ их достоинств и недостатков, сравнение эффективности работы каждой программы.

    курсовая работа, добавлен 10.02.2019

  • Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.

    реферат, добавлен 15.08.2014

  • Задача линейного программирования. Определение максимума и минимума значения функции. Система линейных ограничений. Этапы решения задачи графическим методом. Универсальный метод решения систем линейных уравнений. Алгоритм двойственного симплекс-метода.

    контрольная работа, добавлен 30.04.2013

  • Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.

    дипломная работа, добавлен 26.07.2018

  • Решение интегральных уравнений методом наибыстрейшего спуска. Теорема о минимуме квадратичного функционала и ее следствие. Разработка алгоритма приближенного решения обыкновенного интегрального уравнения. Постановка задачи, численная реализация на ЭВМ.

    курсовая работа, добавлен 12.10.2009

  • Определение линейных дифференциальных уравнений. Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными. Метод Лагранжа и Эйлера. Локальная и интегральная теоремы Лапласа. Формула полной вероятности Байеса.

    шпаргалка, добавлен 02.02.2016

  • Алгоритм решения задачи интегрирования системы ОДУ методом Рунге-Кутты, условная минимизация функции нескольких переменных заданным методом. Решение задач с использованием программы Matlab с представлением необходимой графической и табличной информации.

    курсовая работа, добавлен 20.02.2019

  • Метод множителей Лагранжа позволяет отыскивать максимум или минимум функции при ограничениях-равенствах. Безусловный и условный экстремумы в задаче Лагранжа. Применение неопределенных множителей Лагранжа сводит задачу оптимизации с ограничениями к задаче.

    курсовая работа, добавлен 20.01.2009

  • Задача коммивояжера: понятие и сущность, основное содержание и общее описание, методы решения (жадный и деревянный метод, методы ветвей и границ, алгоритм Дейкстры) и их сравнительная характеристика. Сферы применения задачи коммивояжера на практике.

    курсовая работа, добавлен 19.03.2012

  • Этапы разработки программы для решения задачи нахождения наибольшего паросочетания в двудольном графе. Модули программы: характеристика и алгоритмы тестирования. Особенности разработки графического интерфейса с возможностью ввода и вывода информации.

    контрольная работа, добавлен 21.02.2019

  • Поняття апроксимування функції та його використання при обчисленнях на ЕОМ. Постановка задачі та інтерполяційний многочлен у формі Лагранжа. Вимоги до обчислювальних алгоритмів. Метод обернених різниць Тіле та модифікований алгоритм Течера-Тьюкі.

    реферат, добавлен 14.02.2010

  • Сравнение методов одномерной безусловной оптимизации. Алгоритм пассивного поиска минимума. Анализ методов поиска, основанных на аппроксимации целевой функции. Программная реализация сравнения методов оптимизации. Описание процесса отладки программы.

    дипломная работа, добавлен 24.05.2018

  • Примеры решения типовых задач и задачи для самостоятельного решения. Область определения функции. Выяснение четности (нечетности) функции. Построение графика функции. Пределы функций, раскрытие неопределенности. Преображение графиков элементарных функций.

    практическая работа, добавлен 20.12.2011

  • Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.

    курсовая работа, добавлен 23.08.2014

  • Рассмотрение методов статистического анализа нелинейных динамических систем. Характеристика метода интерполяционных полиномов. Обоснование выбора программного обеспечения. Построение графика функции и интерполяционного многочлена формуле Лагранжа.

    курсовая работа, добавлен 19.04.2017

  • Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.

    реферат, добавлен 11.11.2010

  • Нахождение стационарных точек функций двух и трех переменных, вычисление их экстремальных точек и значений. Составление функции Лагранжа. Решение задачи линейного программирования симплекс-методом. Методы определения начального плана транспортной задачи.

    контрольная работа, добавлен 16.10.2017

  • Особливості застосування математичної теорії в програмуванні. Інтерполювання функцій алгебраїчними многочленами. Створення програми, яка демонструє інтерполювання функції в заданих вузлах методом Лагранжа. Загальна задача апроксимації та інтерполяції.

    курсовая работа, добавлен 23.04.2011

  • Построение интерполяционной функции, удовлетворяющей поставленному условию. Характеристика определителя Вандермонда. Подставление переменной в функцию при известных заданных коэффициентах. Рассмотрение интерполяционных многочленов Лагранжа и Ньютона.

    презентация, добавлен 30.10.2013

  • Алгоритм построения интерполяционного кубического сплайна. Разработка программы для интерполяции функции sinx на промежутке [0;П] при равномерном разбиении с удвоением числа отрезков n. Расчет максимальной погрешности, коэффициента ее уменьшения.

    курсовая работа, добавлен 23.04.2011

  • Характеристика классов приближающих функций. Метод интерполяции Лагранжа. Метод получения аппроксимирующего значения функции без построения в явном виде полинома. Метод сплайн-аппроксимации и наименьших квадратов. Способы определения полиномы Чебышева.

    контрольная работа, добавлен 03.06.2009

  • Задача о числе счастливых билетов и формула Бинома Ньютона. Определение производящей функции. Восстановление элементов последовательностей по известным производящим функциям. Числа и многочлены Фибоначчи и Люка. Последовательность с двумя индексами.

    курсовая работа, добавлен 13.05.2014

  • Использование метода Эйлера для решения дифференциального уравнения. Правило Рунге практической оценки погрешности. Построение интерполяционного многочлена Ньютона. Расчет коэффициентов системы линейных уравнений при квадратичном аппроксимировании.

    курсовая работа, добавлен 01.10.2012

  • Применение метода простых итераций и метода Ньютона для решения систем нелинейных уравнений. Интерполирование функций с помощью формулы Лагранжа. Способы вычисления однократных интегралов. Решение обыкновенных дифференциальных уравнений и систем.

    учебное пособие, добавлен 18.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.