Методы оптимизации
Методы одномерной безусловной оптимизации. Нахождение промежутка локализации точки минимума методом начального поиска промежутка. Итерационные методы решения задач безусловной оптимизации. Приведение задачи линейного программирования к каноническому виду.
Подобные документы
Характеристика вычислительных трудностей, связанных с барьерными функциями. Этапы алгоритма методы барьерных функций, теорема Лемма и отсутствие ограничений-равенств. Процесс преобразования задачи с ограничениями в задачу безусловной оптимизации.
лекция, добавлен 06.09.2017Характеристика прямых методов безусловной минимизации многомерных задач: метода Хука-Дживса, Розенброка, циклического покоординатного спуска, сопряженных направлений Пауэлла. Изучение особенностей метода минимизаций функций по правильному симплексу.
презентация, добавлен 09.07.2015Линейное программирование как метод оптимизации. Общая задача линейного программирования и ее формулировка. Геометрическая интерпретация задачи, графический метод ее решения и область применения. Основные примеры задач, решаемых графическим методом.
реферат, добавлен 11.11.2010Особенности геометрического решения задач линейного программирования и решения симплекс-методом. Рассмотрение метода искусственного базиса. Основные правила выпуклого программирования. Условия Куна-Таккера. Применение метода возможных направлений.
методичка, добавлен 13.09.2015Рассмотрение задачи оптимизации дробно-линейной функции с линейными ограничениями с точки зрения проективной геометрии. Характеристика задачи дробно-линейного программирования проективным преобразованием. Особенности максимизирования линейной функции.
статья, добавлен 21.01.2018Способы оценки погрешности численного решения нелинейных уравнений. Рекуррентная формула, которая используется для получения решения уравнения методом Ньютона. Алгоритм нахождения точки экстремума с использованием методики одномерной оптимизации.
курсовая работа, добавлен 16.06.2021Формулировка задачи линейного программирования. Решение задачи методом симплекс-таблиц и симплекс-методом с применением искусственного базиса. Составление программы для нахождения решения задачи линейного программирования методом симплексных таблиц.
курсовая работа, добавлен 21.12.2012Методы решения экстремальных задач с нелинейной целевой функцией. Решение задач стохастического нелинейного программирования. Вычислительные алгоритмы нелинейного программирования. Стратегия градиентных (наискорейшего спуска) методов оптимизации.
контрольная работа, добавлен 09.05.2012Статистические методы оптимизации экспериментальных исследований в металлургии. Основы методов регрессионного, корреляционного и дисперсионного анализов, а также планирования экстремального эксперимента. Проверка однородности результатов измерений.
курс лекций, добавлен 23.10.2012- 35. Численные методы
Задача линейного программирования. Определение максимума и минимума значения функции. Система линейных ограничений. Этапы решения задачи графическим методом. Универсальный метод решения систем линейных уравнений. Алгоритм двойственного симплекс-метода.
контрольная работа, добавлен 30.04.2013 Составление обобщенной функции Лагранжа. Необходимые условия экстремума первого порядка. Анализ выполнения достаточных условий экстремума. Нахождение минимума функции методом Нелдера–Мида. Определение вершин многогранника сопряженных направлений.
контрольная работа, добавлен 13.10.2017Суть минимизирования (максимизирования) целевой функции с учетом ограничений на управляемые переменные. Характеристика численных методов решения задач одномерной оптимизации. Описание методов ломаных и касательных, особенности решения задачи в Pascal.
курсовая работа, добавлен 26.09.2013Понятия теории линейного программирования, его элементы, применение для решения прикладных задач производственного и экономического содержания. Формулировка основной задачи, ее геометрическая интерпретация и симплекс-метод и специальные методы решения.
дипломная работа, добавлен 13.12.2013Характеристика математического программирования как отдельной дисциплины. Понятие линейного, нелинейного и динамического программирования. Методы решения задач: графический, симплексный методы; постановка двойственной задачи; метод множителей Лагранжа.
реферат, добавлен 15.08.2014Математические постановки и разнообразие формулировок задач оптимизации. Условия экстремумов, теорема об эффективности последовательных методов и особенности задач нелинейного программирования. Сбалансированная и несбалансированная транспортные задачи.
шпаргалка, добавлен 11.09.2011Задача поиска минимума функции. Теоремы сходимости метода градиентного спуска. Выбор оптимального шага. Градиентный метод с дроблением шага. Геометрическая интерпретация метода наискорейшего спуска. Необходимость решения одномерной задачи оптимизации.
контрольная работа, добавлен 23.04.2011Общая характеристика линейной одномерной модели нестационарного процесса теплопроводности. Знакомство с основными особенностями решения граничных обратных задач теплопроводности на основе параметрической оптимизации. Рассмотрение уравнения Фурье.
статья, добавлен 28.01.2020Методы поиска точек экстремума функции на отрезке: простого перебора, золотого сечения, деления отрезка. Сущность и содержание методов с использованием информации о производной функции: средней точки, касательной, секущих, кубической аппроксимации.
контрольная работа, добавлен 28.12.2014Освоение решения типовой задачи оптимизации поисковым методом. Анализ и модификация метода решения реальной задачи оптимизации на основе конкретной научной публикации. Процесс исследования и минимизация функции. Блок-схема поискового метода Хука-Дживса.
курсовая работа, добавлен 20.11.2011Приближенные методы решения систем линейных уравнений. Эффективность применения приближенных методов. Метод итераций в системе с n линейных уравнений с n неизвестными. Решение СЛАУ высокого порядка методом Ланцоша. Проблема выбора начального приближения.
реферат, добавлен 16.03.2012Алгоритм решения задачи на безусловный экстремум с использованием необходимых и достаточных условий. Метод множителей Лагранжа как один из общих подходов, используемых при решении задач оптимизации на основании теории дифференциального исчисления.
дипломная работа, добавлен 26.07.2018Методы локально-стохастического поиска минимума функции. Исследование гибридного метода, полученного на базе способов поиска. Адаптивный алгоритм случайного поиска, метод наилучшей пробы с его градиентной вариацией и гранулярный радиальный поиск.
дипломная работа, добавлен 07.12.2019Приведение определителя к треугольному виду с помощью элементарных преобразований над строками или столбцами. Решение системы методом обратной матрицы и методом Гаусса. Приведение квадратичной формы к каноническому виду методом Лагранжа, переход к базису.
контрольная работа, добавлен 26.01.2015Методы дискретного программирования. Применение целочисленного линейного программирования в экономике. Методы последовательного улучшения плана или последовательного уточнения оценок. Графический метод решения задач целочисленного программирования.
реферат, добавлен 24.01.2017Недостатки геометрической интерпретации в решении задач линейного программирования. Принципиальные отличия вычислительных методов решения задач. Сущность симплекс–метода. Примеры решения задач линейного программирования с использованием симплекс-метода.
презентация, добавлен 04.01.2018