Описание метода Гельфанда-Левитана
Получение алгоритма решения обратной задачи для оператора Штурма-Лиувилля, определяемого уравнением и краевыми условиями. Доказательство теоремы о существовании и асимптотическом поведении собственных значений. Построение операторов преобразования.
Подобные документы
Понятие линейной алгебры и две ее основные задачи: решение системы линейных алгебраических уравнений и определение собственных значений и собственных векторов матрицы. Численные методы решения данных задач: Гаусса, Крамера, итерации для линейных систем.
контрольная работа, добавлен 12.12.2012Метод сеток решения уравнений параболического типа, оценка погрешности и сходимость метода сеток. Прогонка решения разностной задачи. Доказательство устойчивости разностной схемы. Разработка программного модуля, описание логики. Пример работы программы.
курсовая работа, добавлен 25.11.2011Решение обратной задачи гравиметрии как актуальна задача в современных условиях. Особенности интегрального уравнения Фредгольма первого рода, которое является некорректной задачей. Основные математические аспекты решения двумерной задачи гравиметрии.
статья, добавлен 30.01.2017Описание метода Гаусса. Рассмотрение алгоритма на примере системы уравнений. Необходимое и достаточное условие применимости метода. Анализ прямого и обратного хода, построение схемы единственного деления. Контроль и точность вычислений в уравнениях.
реферат, добавлен 31.05.2009Великая теорема Ферма как самый большой контраст между простотой формулировки и сложностью доказательства. Утверждение Ферма–Майзелиса. Некоторые сведения из теории графов и определения. Универсальное доказательство неразрешимости уравнения теоремы.
реферат, добавлен 30.03.2017Алгоритм решения задачи о назначениях, предполагающий минимизацию ее целевой функции, поиск оптимального решения. Венгерский метод - один из интереснейших и наиболее распространенных методов решения транспортных задач. Описание алгоритма данного метода.
курсовая работа, добавлен 14.06.2011Алгоритм численного метода решения систем обыкновенных дифференциальных уравнений (задачи Коши). Применение метода Эйлера в алгоритме. Перечень основных положений предложенного метода решения систем ОДУ. Программа реализации алгоритма на языке Си.
статья, добавлен 23.10.2010- 58. Теория Фалеса
Применение теоремы Фалеса для деления отрезка на n равных частей. Интерпретация теоремы о пропорциональных отрезках. Обоснование и доказательство правдивости теоремы Фалеса в планиметрии. Использование теоремы Фалеса в решении геометрических задач.
презентация, добавлен 01.02.2016 Понятие комбинаторной конфигурации. Способы решения задачи коммивояжера. Погрешность деревянного алгоритма. Метод ветвей и границ. Выбор алгоритма решения. Анализ методов решения задачи коммивояжера, определение области их эффективного действия.
курсовая работа, добавлен 23.08.2014Основное утверждение и средства к доказательству первой и второй частей Великой теоремы Ферма, общее замечание к ней. Решение основного утверждения в первой части и гипотетическое доказательство для второй части, полученные элементарным методом.
статья, добавлен 01.12.2010Ознакомление с условиями применения теоремы Ферма. Математическое выражение средств поиска целых величин из натуральных чисел. Изучение формул Абеля. Примеры уравнений, доказывающих правильность рассматриваемой теоремы. Область вспомогательных лемм.
статья, добавлен 11.07.2015Уравнение Шрёдингера с некоторыми фиксированными физическими величинами. Задача Коши для уравнения Шрёдингера после преобразования Фурье. Проверка доказательства теоремы о бесконечной гладкости решений уравнения Шрёдингера с начальными условиями.
курсовая работа, добавлен 05.03.2018- 63. Алгоритм комбинированного метода решения конечноэлементных задач с нелинейностями различного типа
Описание нового итерационного алгоритма на основе метода конечных элементов, разработанного для решения контактных задач механики деформируемого твердого тела. Метод решения нелинейных систем уравнений как сходящейся последовательности линейных задач.
статья, добавлен 27.05.2018 Построение цепочки силлогизмов для создания доказательства, утверждающего истинность теоремы. Классификация теорем по логической структуре, характеристика необходимых и достаточных условий. Существующие системы аксиом, предъявляемые к ним требования.
презентация, добавлен 15.02.2012Рассмотрение многомерных обобщений теоремы Абеля. Построение тройки тетраэдров по их двойственным графам. Вычисление смешанного объема суммы с помощью программы Wolfram. Доказательство неразрешимости группы монодромии системы и наличия транспозиции.
контрольная работа, добавлен 26.07.2016Рассмотрение обратной краевой задачи для эволюционного уравнения четвёртого порядка, возникающего в гидроакустике стратифицированной жидкости. Решение обратной задачи при граничных условиях. Теорема существования и единственности классического решения.
статья, добавлен 27.09.2012Начально-краевая задача для одного квазилинейного параболического уравнения с запоминающим оператором в ограниченной области с достаточно гладкой границей. Доказательство теоремы о существовании решений рассматриваемой задачи с запоминающим оператором.
статья, добавлен 11.11.2018Роль задач на построение в психическом развитии подростков. Задачи на построение в школьных учебниках. Геометрические построения с использованием линейки. Применение теоремы Дезарга для построения параллельных прямых. Задачи с недоступными элементами.
методичка, добавлен 10.04.2012Предположение о простоте решения теоремы Ферма геометрическим способом. Особенности интерпретации известной формулы с точки зрения многомерности пространства. Физическое понимание множества измерений и способы применения их для расчетов в математике.
доклад, добавлен 23.08.2013Основы задач о назначениях в теории. Изучение истории создания венгерского метода решения задач о назначениях. Описание алгоритма решения данным методом за время порядка полинома, не зависящего от величины стоимостей. Реализация задачи о назначениях.
курсовая работа, добавлен 15.05.2014- 71. Численные методы
Рассмотрение решений систем линейных алгебраических уравнений. Описание численных методов нелинейных уравнений, интерполяция и приближение функции. Краевые задачи, примеры расчетов и способов решения. Изучение метода обратной интерации, его характеристика
курс лекций, добавлен 26.04.2014 - 72. Об одной нелокальной задаче для гиперболического уравнения с интегральными условиями первого рода
Анализ нелокальной задачи для гиперболического уравнения с интегральными условиями первого рода. Метод, позволяющий свести поставленную задачу к задаче с интегральным условием второго рода. Доказательство существования единственного обобщенного решения.
статья, добавлен 31.05.2013 Значение теоремы Дж. Чевы и Менелая в золотом фонде древнегреческой математики. Сравнительный анализ в эффективности применение этих теорем по сравнению с другими способами решения планиметрических задач. Доказательство теоремы о биссектрисе угла.
контрольная работа, добавлен 30.09.2013Рассмотрение вариантов решения однородных уравнений со степенью n>2. Описание алгоритма решения с наложением ограничения на величину коэффициента при втором члене выделяемого многочлена. Анализ возможности нахождения дробных значений корней уравнений.
лекция, добавлен 01.02.2017Исследование и анализ свойств оператор-функции задачи и доказательство теоремы единственности для случая, когда одна из сред имеет поглощение. Структура спектра задачи в случае сред без поглощения. Обоснование и реализация численного метода Галеркина.
автореферат, добавлен 26.01.2018