Математический анализ для решения физических задач

Производная как мгновенная скорость. Правила дифференцирования, показательная и логарифмическая функции. Восстановление пути скорости. Геометрический смысл интеграла и его применение для вычисления площадей и объемов. Задача о трении намотанного каната.

Подобные документы

  • Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.

    учебное пособие, добавлен 13.01.2014

  • Определение первообразной функции и неопределенного интеграла. Геометрический смысл неопределенного интеграла. Теорема о разложении правильной рациональной дроби на простейшие дроби. Метод неопределенных коэффициентов. Формула замены переменной.

    контрольная работа, добавлен 27.08.2013

  • Характеристика определенного интеграла как аддитивного монотонного функционала, заданного на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая – область в множестве задания этой функции. Примеры решения задач.

    реферат, добавлен 25.05.2016

  • Определение производных высших порядков. Дифференцирование функции на определенном отрезке. Нахождение производной высшего порядка от данной функции. Механический смысл второй производной. Ускорение движения точки. Скорость как производная.

    лекция, добавлен 05.03.2009

  • Методы решения уравнений в странах древнего мира. Решение задач, решаемых уравнениями первой степени. Смысл решения Ахмеса и умножение смешанного числа. Метод одного ложного положения и способ фальшивого правила. Правила решения квадратных уравнений.

    реферат, добавлен 26.09.2011

  • Основная задача дифференциального исчисления. Нахождение углового коэффициента касательной к графику кривой. Максимумы и минимумы. Формулы нахождения производных. Линейные аппроксимации. Изучении площадей криволинейных плоских фигур. Частные производные.

    лекция, добавлен 21.04.2010

  • Знакомство с основными особенностями теоремы Чевы и Менелая. Рассмотрение способов и методов решения решения геометрических задач. Общая характеристика примеров применения прямой, а также обратной теорем Чевы. Анализ задач для самостоятельного решения.

    контрольная работа, добавлен 26.02.2020

  • Математический анализ функции одной переменной, основные теоремы о пределах функций, их дифференцируемость. Производная и дифференциал высших порядков, экстремумы функций. Методы интегрирования, неопределенный и определенный интегралы, их свойства.

    шпаргалка, добавлен 12.01.2013

  • Изучение единственного решения для смешанных краевых задач с заданными начальными условиями. Ознакомление с обозначениями сеточной функции по переменной. Анализ геометрического места узлов функции в разностном уравнении с фиксированными алгоритмами.

    презентация, добавлен 30.10.2013

  • Ознакомление с кинематической интерпретацией дифференциальных уравнений. Способы решения линейных и квадратных равенств. Показательная функция дифференцирования. Исчисление задач с постоянными коэффициентами. Содержание теории Пуанкаре–Бендиксона.

    учебное пособие, добавлен 23.12.2014

  • Особенности применения метода дополнительного аргумента для вычисления необходимых коэффициентов характеристической системы. Методика доказательства существования решения задачи Коши. Площадь криволинейной трапеции как физический смысл интеграла.

    дипломная работа, добавлен 01.10.2017

  • Особенности геометрического решения задач линейного программирования и решения симплекс-методом. Рассмотрение метода искусственного базиса. Основные правила выпуклого программирования. Условия Куна-Таккера. Применение метода возможных направлений.

    методичка, добавлен 13.09.2015

  • Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.

    курсовая работа, добавлен 13.11.2011

  • Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.

    курсовая работа, добавлен 21.05.2012

  • Понятие определенного интеграла. Алгоритмы нахождения определенного интеграла методами трапеций и средних прямоугольников. Геометрический смысл определенного интеграла. Оценка абсолютной погрешности метода трапеций. Метод левых и правых прямоугольников.

    курсовая работа, добавлен 27.02.2020

  • Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.

    курсовая работа, добавлен 16.05.2019

  • Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.

    курс лекций, добавлен 23.10.2013

  • Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.

    лекция, добавлен 12.07.2015

  • Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.

    курс лекций, добавлен 29.05.2014

  • Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.

    конспект урока, добавлен 18.04.2016

  • Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.

    реферат, добавлен 26.06.2013

  • Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.

    курсовая работа, добавлен 10.07.2017

  • Применение термина "функция" в математике. Составление таблицы обратных значений чисел, от сложных процентов до показательной функции. Характеристика радиоактивного распада, показательная функция и биология. Логарифмическая спираль в природе и технике.

    контрольная работа, добавлен 09.12.2015

  • Правила решения уравнений первого порядка, нахождение неизвестной производной функции (дифференциала). Геометрический смысл общего и частного решения. Уравнения с разделяющимися переменными. Простейшие случаи нахождения интегрирующегося множителя.

    курс лекций, добавлен 11.10.2014

  • Свойства непрерывных функций на языке приращений. Классификация точек разрыва. Экономический смысл непрерывности. Геометрический смысл теорем Вейерштрасса, Коши, Вейерштрасса. Применение в математике метода половинного деления. Вычисление корня уравнения.

    реферат, добавлен 19.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.