Математический анализ для решения физических задач
Производная как мгновенная скорость. Правила дифференцирования, показательная и логарифмическая функции. Восстановление пути скорости. Геометрический смысл интеграла и его применение для вычисления площадей и объемов. Задача о трении намотанного каната.
Подобные документы
Решение систем линейных уравнений методом Крамера. Матрицы и операции над векторами. Плоскости и прямая в пространстве. Введение в математический анализ. Дифференциальное исчисление функции. Методы вычисления неопределенного и определенного интеграла.
учебное пособие, добавлен 13.01.2014Определение первообразной функции и неопределенного интеграла. Геометрический смысл неопределенного интеграла. Теорема о разложении правильной рациональной дроби на простейшие дроби. Метод неопределенных коэффициентов. Формула замены переменной.
контрольная работа, добавлен 27.08.2013Характеристика определенного интеграла как аддитивного монотонного функционала, заданного на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая – область в множестве задания этой функции. Примеры решения задач.
реферат, добавлен 25.05.2016Определение производных высших порядков. Дифференцирование функции на определенном отрезке. Нахождение производной высшего порядка от данной функции. Механический смысл второй производной. Ускорение движения точки. Скорость как производная.
лекция, добавлен 05.03.2009- 55. История алгебры
Методы решения уравнений в странах древнего мира. Решение задач, решаемых уравнениями первой степени. Смысл решения Ахмеса и умножение смешанного числа. Метод одного ложного положения и способ фальшивого правила. Правила решения квадратных уравнений.
реферат, добавлен 26.09.2011 Основная задача дифференциального исчисления. Нахождение углового коэффициента касательной к графику кривой. Максимумы и минимумы. Формулы нахождения производных. Линейные аппроксимации. Изучении площадей криволинейных плоских фигур. Частные производные.
лекция, добавлен 21.04.2010Знакомство с основными особенностями теоремы Чевы и Менелая. Рассмотрение способов и методов решения решения геометрических задач. Общая характеристика примеров применения прямой, а также обратной теорем Чевы. Анализ задач для самостоятельного решения.
контрольная работа, добавлен 26.02.2020Математический анализ функции одной переменной, основные теоремы о пределах функций, их дифференцируемость. Производная и дифференциал высших порядков, экстремумы функций. Методы интегрирования, неопределенный и определенный интегралы, их свойства.
шпаргалка, добавлен 12.01.2013Изучение единственного решения для смешанных краевых задач с заданными начальными условиями. Ознакомление с обозначениями сеточной функции по переменной. Анализ геометрического места узлов функции в разностном уравнении с фиксированными алгоритмами.
презентация, добавлен 30.10.2013Ознакомление с кинематической интерпретацией дифференциальных уравнений. Способы решения линейных и квадратных равенств. Показательная функция дифференцирования. Исчисление задач с постоянными коэффициентами. Содержание теории Пуанкаре–Бендиксона.
учебное пособие, добавлен 23.12.2014Особенности применения метода дополнительного аргумента для вычисления необходимых коэффициентов характеристической системы. Методика доказательства существования решения задачи Коши. Площадь криволинейной трапеции как физический смысл интеграла.
дипломная работа, добавлен 01.10.2017Особенности геометрического решения задач линейного программирования и решения симплекс-методом. Рассмотрение метода искусственного базиса. Основные правила выпуклого программирования. Условия Куна-Таккера. Применение метода возможных направлений.
методичка, добавлен 13.09.2015Изучение формулы Ньютона-Лейбница и способа вычисления определенного интеграла с ее помощью. Вычисление площадей плоских фигур и длины дуги кривой. Приближенное вычисление определенного интеграла. Вычисление двойного интеграла в полярных координатах.
курсовая работа, добавлен 13.11.2011Понятие и свойства тройного интеграла, его использование в решении прикладных задач. Вычисление тройного интеграла в декартовых, сферических, цилиндрических координатах. Нахождение площадей, ограниченных кривыми, и объемов, ограниченных поверхностями.
курсовая работа, добавлен 21.05.2012Понятие определенного интеграла. Алгоритмы нахождения определенного интеграла методами трапеций и средних прямоугольников. Геометрический смысл определенного интеграла. Оценка абсолютной погрешности метода трапеций. Метод левых и правых прямоугольников.
курсовая работа, добавлен 27.02.2020Особенности вычисления интегралов методом Монте-Карло. Математическое обоснование алгоритма вычисления интеграла. Применение метода Монте-Карло для вычисления n–мерного интеграла. Программа вычисления определенного интеграла методом Монте-Карло.
курсовая работа, добавлен 16.05.2019Геометрическое изображение функции двух переменных. Частные производные, их свойства и геометрический смысл. Предел и непрерывность функции нескольких переменных, их функции. Применение дифференциала к приближенным вычислениям, сложным функциям.
курс лекций, добавлен 23.10.2013Ограниченные и замкнутые множества. Характеристика множеств в пространствах любого числа измерений. Анализ задач, приводящих к понятию функции нескольких переменных. Геометрический смысл производной. Предел, непрерывность и дифференцируемость функции.
лекция, добавлен 12.07.2015Матрицы и действия над ними. Системы линейных алгебраических уравнений и их решение. Компланарные, коллинеарные и ортогональные векторы. Скалярное произведение и его свойства. Уравнение кривых 2-го порядка. Производная функция. Правила дифференцирования.
курс лекций, добавлен 29.05.2014Понятие определенного интеграла. Описание классов интегрируемых функций. Анализ свойств определенного интеграла и методов его вычисления. Примеры вычисления интеграла при помощи формулы Ньютона–Лейбница, замены переменной, интегрирования по частям.
конспект урока, добавлен 18.04.2016- 71. Производная
Геометрический смысл производной. Правило нахождения экстремума. Точка перегиба графика функции. Общая схема исследования функции и построение ее графика. Касательная и нормаль к плоской кривой. Достаточные условия убывания и возрастания функции.
реферат, добавлен 26.06.2013 Понятие неопределенного интеграла и его свойства, метод подстановки и интегрирования. Формула Ньютона-Лейбница, замена переменной в определенном интеграле. Площадь плоской фигуры в декартовых координатах, расчет объема тела по площади заданного сечения.
курсовая работа, добавлен 10.07.2017Применение термина "функция" в математике. Составление таблицы обратных значений чисел, от сложных процентов до показательной функции. Характеристика радиоактивного распада, показательная функция и биология. Логарифмическая спираль в природе и технике.
контрольная работа, добавлен 09.12.2015Правила решения уравнений первого порядка, нахождение неизвестной производной функции (дифференциала). Геометрический смысл общего и частного решения. Уравнения с разделяющимися переменными. Простейшие случаи нахождения интегрирующегося множителя.
курс лекций, добавлен 11.10.2014Свойства непрерывных функций на языке приращений. Классификация точек разрыва. Экономический смысл непрерывности. Геометрический смысл теорем Вейерштрасса, Коши, Вейерштрасса. Применение в математике метода половинного деления. Вычисление корня уравнения.
реферат, добавлен 19.12.2014