Аксиоматический метод

Аксиоматический метод построения научной теории. Основные понятия. "Начала" Евклида. Модель планиметрии Лобачевского на евклидовой плоскости. Геометрия Лобачевского. Исторические сведения о развитии тригонометрии. Тригонометрические соотношения.

Подобные документы

  • Основные понятия теории вероятностей, пространство случайных и элементарных событий. Операции над событиями (сумма, разность, произведение) и свойства операций. Сущность алгебры и сигма-алгебры событий, аксиоматическое построение теории вероятностей.

    реферат, добавлен 25.02.2011

  • Толкование к астрономическому сочинению Птолемея и знаменитым геометрическим “Началам" Евклида Гипатии Александрийской. Математические исследования С. Ковалевской. Научная и общественная деятельность Н. Бари. Сотрудничество Н. Лобачевского и С. Яновской.

    реферат, добавлен 04.04.2009

  • Развитие понятия о числе. Корни, степени и логарифмы. Координаты и векторы. Основы тригонометрии. Степенные, показательные, логарифмические и тригонометрические функции. Свойства многогранников. Начала математического анализа. Применение интеграла.

    учебное пособие, добавлен 29.11.2014

  • Исследование проекционных способов начертательной геометрии, дающих возможность получать наглядные изображения проектируемых объектов и комплексов. Рассмотрение аксиомы Евклида о параллельности. Изучение классификации проекций и примеров их построения.

    реферат, добавлен 23.12.2013

  • Николай Лобачевский, один из гениальных математиков, краткая биография ученого. Области применения геометрии Лобачевского в науке. Лобачевский - автор фундаментальных работ в области алгебры, теории бесконечных рядов и приближенного решения уравнений.

    реферат, добавлен 07.06.2021

  • Сферика как первая геометрия, отличная от евклидовой. История возникновения сферической геометрии, первые теоремы и античные математические сочинения. Основные понятия сферической геометрии, свойства сферического треугольника и его тригонометрия.

    реферат, добавлен 01.10.2014

  • Определение дуальных и двойных чисел, их формулы и расчеты. Дуальные числа как ориентированные прямые плоскости. Определение модуля, сопряжённого числа, делителя нуля и цикла множества ориентированных и бесконечно удалённых прямых плоскости Лобачевского.

    курсовая работа, добавлен 22.04.2011

  • Тригонометрические функции числового аргумента. Метод замены переменной, разложения на множители, решения однородных тригонометрических уравнений. Отбор корней. Метод подстановки, введения новой переменной, алгебраического сложения и вычитания уравнений.

    курсовая работа, добавлен 10.05.2020

  • Понятие тригонометрии как раздела математики, в котором изучаются тригонометрические функции и их приложения к геометрии. Применение науки в древности для расчётов в астрономии, геодезии и архитектуре. Особенности ее возникновения и стимул для развития.

    реферат, добавлен 28.09.2014

  • Изучение свойств фигур на плоскости, основные понятия планиметрии и представления о геометрических телах. Основные свойства точек, прямых и плоскостей, касающиеся их взаимного геометрического расположения и их значения относительно плоскости в аксиоме.

    презентация, добавлен 13.04.2012

  • Аксиоматический метод в математике. Конъюнктивная и дизъюнктивная нормальные формы. Построение исчисления высказываний в виде формальной системы. Формализация математических теорий на языке первого порядка. Теорема о полноте. Алгоритмы и машина Тьюринга.

    учебное пособие, добавлен 07.08.2013

  • Геометрическая теория, основанная на системе аксиом, впервые изложенная в "Началах" математика Евклида (III век до н.э.). Аксиома как "фундамент" для построения доказательств утверждений или теорем. Научные исследования и педагогические заслуги Евклида.

    презентация, добавлен 21.02.2017

  • Множества и операции над ними. Декартово произведение множеств. Понятие и свойства алгоритма. Аксиоматический метод. Понятие о комбинаторной задаче. Математические утверждения и их структура. Основы математической логики. Соответствия и отношения.

    курс лекций, добавлен 25.09.2017

  • Меры измерения углов: градусная, радианная. Понятие тангенса, косинуса, синуса, арктангенса и котангенса, их геометрический смысл. Графики тригонометрических и обратных тригонометрических функций. Основные тригонометрические тождества и следствия из них.

    лекция, добавлен 18.04.2012

  • Четыре периода развития математики, выделяемые академиком Колмогоровым. Суть "воображаемой" геометрии Н.И. Лобачевского. Главная причина математизации современного мира, связанная с бурным ростом вычислительной техники и инновационными технологиями.

    контрольная работа, добавлен 04.02.2016

  • Роль математики в современной науке. Влияние математики на изменение самого стиля научного мышления, на изменение традиционных способов умозаключений. Аксиоматический метод изложения, принятый в геометрии. Внутреннее логическое единство математики.

    реферат, добавлен 08.11.2012

  • Сущность и применение методики дополнительных построений. Основные принципы стереометрии и планиметрии. Применение метода площадей, метода объемов в математике. Алгебраический метод определения площади треугольника. Особенности расчета объема тетраэдра.

    презентация, добавлен 09.12.2014

  • Исторические замечания о геометрических преобразованиях на плоскости и в пространстве. Анализ примерной программы по геометрии. Параллельный перенос и поворот, осевая и центральная симметрии. Движения и равенство фигур. Симметрия относительно плоскости.

    презентация, добавлен 28.03.2018

  • Возникновение теории вероятностей как науки. Аксиоматический подход и элементарные понятия теории множеств. Операции сложения и умножения событий. Решение типовой задачи на формулу Байеса. Формула полной вероятности в обеспечении качества продукции.

    контрольная работа, добавлен 25.05.2015

  • Теорема Пифагора. Основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объёмов в главном труде Евклида "Начала". Постулаты Евклида, теорема Виета. Арифмометр Лейбница, формула Эйлера.

    презентация, добавлен 09.05.2021

  • Аналитическая геометрия как раздел математики, в котором изучают свойства геометрических объектов средствами алгебры и математического анализа при помощи метода координат. Основные понятия, принципы данного метода, условия его эффективного использования.

    реферат, добавлен 16.03.2016

  • Системы общих комплексных чисел. Решение уравнений второй и высших степеней. Применение двойных чисел, формулы их сложения, вычитания, умножения и деления двойных чисел. Ориентированные прямые плоскости Лобачевского. Предельный случай пересекающих прямых.

    реферат, добавлен 30.11.2015

  • Определение содержания и исследование истории доказательств аксиомы параллельности Евклида, или пятого постулата, как одной из аксиом, лежащих в основании классической планиметрии. Разработка Николаем Ивановичем Лобачевским доказательства V постулата.

    презентация, добавлен 13.04.2012

  • Основы метода комплексных чисел в применении к задачам элементарной геометрии на плоскости и доказательству некоторых основных планиметрических теорем (отрезок; параллельность и перпендикулярность; углы и площади; треугольники; прямые и окружности).

    курсовая работа, добавлен 31.10.2010

  • Рассмотрение на евклидовой плоскости системы ортонормированных координат. Операции над комплексными числами. Теория стереографической проекции сферы на плоскость. Теорема интегрирования абелевых дифференциалов. Косы как деформирующиеся наборы точек.

    учебное пособие, добавлен 28.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу и оценить ее, кликнув по соответствующей звездочке.